
 UNIT V R LANGUAGE 
 Overview,  Programming  structures:  Control  statements  -  Operators  -  Functions  - 
 Environment  and  scope  issues  -  Recursion  -Replacement  functions,  R  data  structures: 
 Vectors  -  Matrices  and  arrays  -  Lists  -Data  frames  -Classes,  Input/output,  String 
 manipulations 

 ARRAYS 
 Arrays  are  essential  data  storage  structures  defined  by  a  fixed  number  of 

 dimensions. Arrays are used for the allocation of space at contiguous memory locations. 
 In  R  Programming  Language  Uni-dimensional  arrays  are  called  vectors  with  the 

 length  being  their  only  dimension.  Two-dimensional  arrays  are  called  matrices,  consisting 
 of  fixed  numbers  of  rows  and  columns.  R  Arrays  consist  of  all  elements  of  the  same  data 
 type.  Vectors  are  supplied  as  input  to  the  function  and  then  create  an  array  based  on  the 
 number of dimensions. 
 Creating an Array 

 An  R  array  can  be  created  with  the  use  of  array()  the  function.  A  list  of  elements  is 
 passed to the array() functions along with the dimensions as required. 
 Syntax: 
 array(data, dim = (nrow, ncol, nmat), dimnames=names) 
 where 
 nrow: Number of rows 
 ncol : Number of columns 
 nmat: Number of matrices of dimensions nrow * ncol 
 dimnames : Default value = NULL. 

 Otherwise,  a  list  has  to  be  specified  which  has  a  name  for  each  component  of  the 
 dimension.  Each  component  is  either  a  null  or  a  vector  of  length  equal  to  the  dim  value  of 
 that corresponding dimension. 
 Uni-Dimensional Array 

 A  vector  is  a  uni-dimensional  array,  which  is  specified  by  a  single  dimension, 
 length.  A  Vector  can  be  created  using  ‘c()‘  function.  A  list  of  values  is  passed  to  the  c() 
 function to create a vector. 
 vec1 <- c(1, 2, 3, 4, 5, 6, 7, 8, 9) 
 print (vec1) 
 cat ("Length of vector : ", length(vec1)) 

 Output: 
 [1] 1 2 3 4 5 6 7 8 9 

https://www.geeksforgeeks.org/r-programming-language-introduction/


 Length of vector :  9 
 Multi-Dimensional Array 

 A  two-dimensional  matrix  is  an  array  specified  by  a  fixed  number  of  rows  and 
 columns,  each  containing  the  same  data  type.  A  matrix  is  created  by  using  array() 
 function to which the values and the dimensions are passed. 
 arr = array(2:13, dim = c(2, 3, 2)) 
 print(arr) 
 Output: 
 , , 1 

 [,1] [,2] [,3] 
 [1,]    2    4    6 
 [2,]    3    5    7 
 , , 2 

 [,1] [,2] [,3] 
 [1,]    8   10   12 
 [2,]    9   11   13 

 Vectors  of  different  lengths  can  also  be  fed  as  input  into  the  array()  function. 
 However,  the  total  number  of  elements  in  all  the  vectors  combined  should  be  equal  to  the 
 number  of  elements  in  the  matrices.  The  elements  are  arranged  in  the  order  in  which  they 
 are specified in the function. 
 vec1 <- c(1, 2, 3, 4, 5, 6, 7, 8, 9) 
 vec2 <- c(10, 11, 12) 
 arr = array(c(vec1, vec2), dim = c(2, 3, 2)) 
 print (arr) 
 Output: 
 , , 1 

 [,1] [,2] [,3] 
 [1,]    1    3    5 
 [2,]    2    4    6 
 , , 2 

 [,1] [,2] [,3] 
 [1,]    7    9   11 
 [2,]    8   10   12 
 Dimension of the Array 
 We will use dim function to find out the dimension of the R array. 
 arr = array(2:13, dim = c(2, 3, 2)) 
 dim(arr) 



 Output: 
 [1] 2 3 2 

 This  specifies  the  dimensions  of  the  R  array.  In  this  case,  we  are  creating  a  3D 
 array  with  dimensions  2x3x2.  The  first  dimension  has  size  2,  the  second  dimension  has 
 size 3, and the third dimension has size 2. 
 Naming of Arrays 

 The  row  names,  column  names  and  matrices  names  are  specified  as  a  vector  of  the 
 number  of  rows,  number  of  columns  and  number  of  matrices  respectively.  By  default,  the 
 rows, columns and matrices are named by their index values. 
 row_names <- c("row1", "row2") 
 col_names <- c("col1", "col2", "col3") 
 mat_names <- c("Mat1", "Mat2") 
 arr = array(2:14, dim = c(2, 3, 2), dimnames = list(row_names, col_names, mat_names)) 
 print (arr) 
 Output: 
 , , Mat1 

 col1 col2 col3 
 row1    2    4    6 
 row2    3    5    7 
 , , Mat2 

 col1 col2 col3 
 row1    8   10   12 
 row2    9   11   13 
 Accessing arrays 

 The  R  arrays  can  be  accessed  by  using  indices  for  different  dimensions  separated 
 by  commas.  Different  components  can  be  specified  by  any  combination  of  elements’ 
 names or positions. 
 Accessing Uni-Dimensional Array 
 The elements can be accessed by using indexes of the corresponding elements. 
 vec <- c(1:10) 
 cat ("Vector is : ", vec) 
 cat ("Third element of vector is : ", vec[3]) 
 Output: 
 Vector is :  1 2 3 4 5 6 7 8 9 10 
 Third element of vector is :  3 
 Accessing entire matrices 
 vec1 <- c(1, 2, 3, 4, 5, 6, 7, 8, 9) 



 vec2 <- c(10, 11, 12) 
 row_names <- c("row1", "row2") 
 col_names <- c("col1", "col2", "col3") 
 mat_names <- c("Mat1", "Mat2") 
 arr  =  array(c(vec1,  vec2),  dim  =  c(2,  3,  2),  dimnames  =  list(row_names,  col_names, 
 mat_names)) 
 arr 
 print ("Matrix 1") 
 print (arr[,,1]) 
 print ("Matrix 2") 
 print(arr[,,"Mat2"]) 
 Output: 
 , , Mat1 

 col1 col2 col3 
 row1    1    3    5 
 row2    2    4    6 
 , , Mat2 

 col1 col2 col3 
 row1    7    9   11 
 row2    8   10   12 
 accessing matrix 1 by index value 
 [1] "Matrix 1" 

 col1 col2 col3 
 row1    1    3    5 
 row2    2    4    6 
 accessing matrix 2 by its name 
 [1] "Matrix 2" 

 col1 col2 col3 
 row1    7    9   11 
 row2    8   10   12 
 Accessing specific rows and columns of matrices 
 Rows and columns can also be accessed by both names as well as indices. 
 vec1 <- c(1, 2, 3, 4, 5, 6, 7, 8, 9) 
 vec2 <- c(10, 11, 12) 
 row_names <- c("row1", "row2") 
 col_names <- c("col1", "col2", "col3") 
 mat_names <- c("Mat1", "Mat2") 



 arr  =  array(c(vec1,  vec2),  dim  =  c(2,  3,  2),  dimnames  =  list(row_names,  col_names, 
 mat_names)) 
 arr 
 print ("1st column of matrix 1") 
 print (arr[, 1, 1]) 
 print ("2nd row of matrix 2") 
 print(arr["row2",,"Mat2"]) 
 Output: 
 , , Mat1 

 col1 col2 col3 
 row1    1    3    5 
 row2    2    4    6 
 , , Mat2 

 col1 col2 col3 
 row1    7    9   11 
 row2    8   10   12 
 accessing matrix 1 by index value 
 [1] "1st column of matrix 1" 
 row1 row2 
 1    2 

 accessing matrix 2 by its name 
 [1] "2nd row of matrix 2" 
 col1 col2 col3 
 8   10   12 

 Adding elements to array 
 Elements  can  be  appended  at  the  different  positions  in  the  array.  The  sequence  of 

 elements  is  retained  in  order  of  their  addition  to  the  array.  The  time  complexity  required 
 to  add  new  elements  is  O(n)  where  n  is  the  length  of  the  array.  The  length  of  the  array 
 increases  by  the  number  of  element  additions.  There  are  various  in-built  functions 
 available in R to add new values: 

 ●  c(vector,  values):  c()  function  allows  us  to  append  values  to  the  end  of  the  array. 
 Multiple values can also be added together. 

 ●  append(vector,  values):  This  method  allows  the  values  to  be  appended  at  any 
 position in the vector. By default, this function adds the element at end. 

 ●  append(vector,  values,  after=length(vector))  adds  new  values  after  specified 
 length of the array specified in the last argument of the function. 



 ●  Using  the  length  function  of  the  array:  Elements  can  be  added  at  length+x 
 indices where x>0. 

 Example: 
 x <- c(1, 2, 3, 4, 5) 
 x <- c(x, 6) 
 print ("Array after 1st modification ") 
 print (x) 
 x <- append(x, 7) 
 print ("Array after 2nd modification ") 
 print (x) 
 len <- length(x) 
 x[len + 1] <- 8 
 print ("Array after 3rd modification ") 
 print (x) 
 x[len + 3]<-9 
 print ("Array after 4th modification ") 
 print (x) 
 print ("Array after 5th modification") 
 x <- append(x, c(10, 11, 12), after = length(x)+3) 
 print (x) 
 print ("Array after 6th modification") 
 x <- append(x, c(-1, -1), after = 3) 
 print (x) 
 Output: 
 [1] "Array after 1st modification " 
 [1] 1 2 3 4 5 6 
 [1] "Array after 2nd modification " 
 [1] 1 2 3 4 5 6 7 
 [1] "Array after 3rd modification " 
 [1] 1 2 3 4 5 6 7 8 
 [1] "Array after 4th modification " 
 [1]  1  2  3  4  5  6  7  8 NA  9 
 [1] "Array after 5th modification" 
 [1]  1  2  3  4  5  6  7  8 NA  9 10 11 12 
 [1] "Array after 6th modification" 
 [1]  1  2  3 -1 -1  4  5  6  7  8 NA  9 10 11 12 
 Removing Elements from Array 



 Elements  can  be  removed  from  arrays  in  R,  either  one  at  a  time  or  multiple 
 together.  These  elements  are  specified  as  indexes  to  the  array,  wherein  the  array  values 
 satisfying  the  conditions  are  retained  and  rest  removed.  The  comparison  for  removal  is 
 based  on  array  values.  Multiple  conditions  can  also  be  combined  together  to  remove  a 
 range  of  elements.  Another  way  to  remove  elements  is  by  using  %in%  operator  wherein 
 the  set  of  element  values  belonging  to  the  TRUE  values  of  the  operator  are  displayed  as 
 result and the rest are removed. 
 Example: 
 m <- c(1, 2, 3, 4, 5, 6, 7, 8, 9) 
 print("Original Array") 
 print(m) 
 m <- m[m != 3] 
 print("After 1st modification") 
 print(m) 
 m <- m[m > 2 & m <= 8] 
 print("After 2nd modification") 
 print(m) 
 remove <- c(4, 6, 8) 
 print(m %in% remove) 
 print("After 3rd modification") 
 print(m[!m %in% remove]) 
 Output: 
 [1] "Original Array" 
 [1] 1 2 3 4 5 6 7 8 9 
 [1] "After 1st modification" 
 [1] 1 2 4 5 6 7 8 9 
 [1] "After 2nd modification" 
 [1] 4 5 6 7 8 
 [1]  TRUE FALSE  TRUE FALSE  TRUE 
 [1] "After 3rd modification" 
 [1] 5 7 
 Updating Existing Elements of Array 

 The  elements  of  the  array  can  be  updated  with  new  values  by  assignment  of  the 
 desired  index  of  the  array  with  the  modified  value.  The  changes  are  retained  in  the 
 original  array.  If  the  index  value  to  be  updated  is  within  the  length  of  the  array,  then  the 
 value  is  changed,  otherwise,  the  new  element  is  added  at  the  specified  index.  Multiple 



 elements  can  also  be  updated  at  once,  either  with  the  same  element  value  or  multiple 
 values in case the new values are specified as a vector. 
 Example: 
 m <- c(1, 2, 3, 4, 5, 6, 7, 8, 9) 
 print ("Original Array") 
 print (m) 
 m[1] <- 0 
 print ("After 1st modification") 
 print (m) 
 m[7:9] <- -1 
 print ("After 2nd modification") 
 print (m) 
 m[c(2, 5)] <- c(-1, -2) 
 print ("After 3rd modification") 
 print (m) 
 m[10] <- 10 
 print ("After 4th modification") 
 print (m) 
 Output: 
 [1] "Original Array" 
 [1] 1 2 3 4 5 6 7 8 9 
 [1] "After 1st modification" 
 [1] 0 2 3 4 5 6 7 8 9 
 [1] "After 2nd modification" 
 [1]  0  2  3  4  5  6 -1 -1 -1 
 [1] "After 3rd modification" 
 [1]  0 -1  3  4 -2  6 -1 -1 -1 
 [1] "After 4th modification" 
 [1]  0 -1  3  4 -2  6 -1 -1 -1 10 

 CLASSES IN R PROGRAMMING 
 Classes  and  Objects  are  basic  concepts  of  Object-Oriented  Programming  that 

 revolve  around  real-life  entities.  Everything  in  R  is  an  object.  An  object  is  simply  a  data 
 structure  that  has  some  methods  and  attributes.  A  class  is  just  a  blueprint  or  a  sketch  of 
 these  objects.  It  represents  the  set  of  properties  or  methods  that  are  common  to  all  objects 
 of one type. 



 Unlike  most  other  programming  languages,  R  has  a  three-class  system.  These  are  S3,  S4, 
 and Reference Classes. 
 S3 Class 
 S3  is  the  simplest  yet  the  most  popular  OOP  system  and  it  lacks  formal  definition  and 
 structure.  An  object  of  this  type  can  be  created  by  just  adding  an  attribute  to  it.  Following 
 is an example to make things more clear: 
 Example: 
 movieList <- list(name = "Iron man", leadActor = "Robert Downey Jr") 
 class(movieList) <- "movie" 
 movieList 
 Output: 
 $name 
 [1] "Iron man" 
 $leadActor 
 [1] "Robert Downey Jr" 
 In  S3  systems,  methods  don’t  belong  to  the  class.  They  belong  to  generic  functions.  It 
 means  that  we  can’t  create  our  own  methods  here,  as  we  do  in  other  programming 
 languages  like  C++  or  Java.  But  we  can  define  what  a  generic  method  (for  example  print) 
 does when applied to our objects. 
 print(movieList) 
 Output: 
 $name 
 [1] "Iron man" 
 $leadActor 
 [1] "Robert Downey Jr" 

 INPUT IN R 
 Developers  often  have  a  need  to  interact  with  users,  either  to  get  data  or  to  provide 

 some  sort  of  result.  Most  programs  today  use  a  dialog  box  as  a  way  of  asking  the  user  to 
 provide  some  type  of  input.  Like  other  programming  languages  in  R  it’s  also  possible  to 
 take input from the user. For doing so, there are two methods in R. 

 ●  Using readline() method 
 ●  Using scan() method 

 Using readline() method 
 In  R  language  readline()  method  takes  input  in  string  format.  If  one  inputs  an 

 integer  then  it  is  inputted  as  a  string,  lets  say,  one  wants  to  input  255,  then  it  will  input  as 
 “255”,  like  a  string.  So  one  needs  to  convert  that  inputted  value  to  the  format  that  he 

https://www.geeksforgeeks.org/introduction-to-r-programming-language/


 needs.  In  this  case,  string  “255”  is  converted  to  integer  255.  To  convert  the  inputted  value 
 to the desired data type, there are some functions in R, 
 as.integer(n)  ; —> convert to integer 
 as.numeric(n)  ; —> convert to numeric type (float,  double etc) 
 as.complex(n); —> convert to complex number (i.e 3+2i) 
 as.Date(n)  —> convert to date …, etc 
 var = readline(); 
 # convert the inputted value to integer 
 var = as.integer(var); 
 # print the value 
 print(var) 
 Output: 
 255 
 [1] 255 
 Taking multiple inputs in R 

 Taking  multiple  inputs  in  R  language  is  same  as  taking  single  input,  just  need  to 
 define  multiple  readline()  for  inputs.  One  can  use  braces  for  define  multiple  readline() 
 inside it. 
 Syntax: 
 var1 = readline(“Enter 1st number : “); 
 var2 = readline(“Enter 2nd number : “); 
 var3 = readline(“Enter 3rd number : “); 
 var4 = readline(“Enter 4th number : “); 
 or, 
 { 
 var1 = readline(“Enter 1st number : “); 
 var2 = readline(“Enter 2nd number : “); 
 var3 = readline(“Enter 3rd number : “); 
 var4 = readline(“Enter 4th number : “); 
 } 
 Example: 
 # using braces 
 { 

 var1 = readline("Enter 1st number : "); 
 var2 = readline("Enter 2nd number : "); 
 var3 = readline("Enter 3rd number : "); 
 var4 = readline("Enter 4th number : "); 

https://www.geeksforgeeks.org/convert-a-character-object-to-integer-in-r-programming-as-integer-function/
https://www.geeksforgeeks.org/convert-factor-to-numeric-and-numeric-to-factor-in-r-programming/
https://www.geeksforgeeks.org/convert-a-string-into-date-format-in-r-programming-as-date-function/


 } 
 # converting each value 
 var1 = as.integer(var1); 
 var2 = as.integer(var2); 
 var3 = as.integer(var3); 
 var4 = as.integer(var4); 
 # print the sum of the 4 number 
 print(var1 + var2 + var3 + var4) 
 Output: 
 Enter 1st number : 12 
 Enter 2nd number : 13 
 Enter 3rd number : 14 
 Enter 4th number : 15 
 [1] 54 
 Using scan() method 

 Another  way  to  take  user  input  in  R  language  is  using  a  method,  called  scan() 
 method.  This  method  takes  input  from  the  console.  This  method  is  a  very  handy  method 
 while  inputs  are  needed  to  taken  quickly  for  any  mathematical  calculation  or  for  any 
 dataset.  This  method  reads  data  in  the  form  of  a  vector  or  list.  This  method  also  uses  to 
 reads input from a file also. 
 Syntax: 
 x = scan() 
 scan()  method  is  taking  input  continuously,  to  terminate  the  input  process,  need  to  press 
 Enter key 2 times on the console. 
 Example: 

 This  is  simple  method  to  take  input  using  scan()  method,  where  some  integer 
 number is taking as input and print those values in the next line on the console. 
 x = scan() 
 print(x) 
 Output: 
 1: 1 2 3 4 5 6 
 7: 7 8 9 4 5 6 
 13: 
 Read 12 items 
 [1] 1 2 3 4 5 6 7 8 9 4 5 6 

 In  R  there  are  various  methods  to  print  the  output.  Most  common  method  to  print 
 output  in  R  program,  there  is  a  function  called  print()  is  used.  Also  if  the  program  of  R  is 

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
https://www.geeksforgeeks.org/print-the-argument-to-the-screen-in-r-programming-print-function/


 written  over  the  console  line  by  line  then  the  output  is  printed  normally,  no  need  to  use 
 any  function  for  print  that  output.  To  do  this  just  select  the  output  variable  and  press  run 
 button. 
 OUTPUT IN R 
 Print output using print() function 

 Using  print()  function  to  print  output  is  the  most  common  method  in  R. 
 Implementation of this method is very simple. 
 Syntax:  print(“any string”) or, print(variable) 
 print("GFG") 
 x <- "GeeksforGeeks" 
 print(x) 
 Output: 
 [1] "GFG" 
 [1] "GeeksforGeeks" 
 Print output using paste() function inside print() function 

 R  provides  a  method  paste()  to  print  output  with  string  and  variable  together.  This 
 method  defined  inside  the  print()  function.  paste()  converts  its  arguments  to  character 
 strings. 
 x <- "GeeksforGeeks" 
 print(paste(x, "is best (paste inside print())")) 
 print(paste0(x, "is best (paste0 inside print())")) 
 Output: 
 [1] "GeeksforGeeks is best (paste inside print())" 
 [1] "GeeksforGeeksis best (paste0 inside print())" 
 Print output using sprintf() function 

 sprintf()  is  basically  a  C  library  function.  This  function  is  use  to  print  string  as  C 
 language.  This  is  working  as  a  wrapper  function  to  print  values  and  strings  together  like 
 C  language.  This  function  returns  a  character  vector  containing  a  formatted  combination 
 of string and variable to be printed. 
 x = "GeeksforGeeks" # string 
 x1 = 255  # integer 
 x2 = 23.14  # float 
 sprintf("%s is best", x) 
 sprintf("%d is integer", x1) 
 sprintf("%f is float", x2) 
 Output: 
 > sprintf("%s is best", x) 

https://www.geeksforgeeks.org/print-the-argument-to-the-screen-in-r-programming-print-function/
https://www.geeksforgeeks.org/concatenate-two-strings-in-r-programming-paste-method/
https://www.geeksforgeeks.org/print-a-formatted-string-in-r-programming-sprintf-function/


 [1] "GeeksforGeeks is best" 
 > sprintf("%d is integer", x1) 
 [1] "255 is integer" 
 > sprintf("%f is float", x2) 
 [1] "23.140000 is float" 
 Print output using cat() function 

 Another  way  to  print  output  in  R  is  using  of  cat()  function.  It’s  same  as  print() 
 function.  cat()  converts  its  arguments  to  character  strings.  This  is  useful  for  printing 
 output in user defined functions. 
 Syntax:  cat(“any string”) or, cat(“any string”, variable) 
 Example: 
 x = "GeeksforGeeks" 
 cat(x, "is best\n") 
 cat("This is R language") 
 Output: 
 GeeksforGeeks is best 
 This is R language 
 Print output using message() function 

 Another  way  to  print  something  in  R  by  using  message()  function.  This  is  not  used 
 for  print  output  but  its  use  for  showing  simple  diagnostic  messages  which  are  no 
 warnings or errors in the program. But it can be used for normal uses for printing output. 
 Syntax:  message(“any string”) or, message(“any string”,  variable) 
 Example: 
 x = "GeeksforGeeks" 
 message(x, "is best") 
 message("This is R language") 
 Output: 
 GeeksforGeeks is best 
 This is R language 

 STRING MANIPULATION IN R 
 String  manipulation  basically  refers  to  the  process  of  handling  and  analyzing 

 strings.  It  involves  various  operations  concerned  with  modification  and  parsing  of  strings 
 to  use  and  change  its  data.  R  offers  a  series  of  in-built  functions  to  manipulate  the 
 contents  of  a  string.  In  this  article,  we  will  study  different  functions  concerned  with  the 
 manipulation of strings in R. 
 Concatenation of Strings 

https://www.geeksforgeeks.org/printing-out-to-the-screen-or-to-a-file-in-r-programming-cat-function/


 String  Concatenation  is  the  technique  of  combining  two  strings.  String 
 Concatenation can be done using many ways: 
 1.  paste()  function  Any  number  of  strings  can  be  concatenated  together  using  the  paste() 
 function  to  form  a  larger  string.  This  function  takes  a  separator  as  an  argument  which  is 
 used  between  the  individual  string  elements  and  another  argument  ‘collapse’  which 
 reflects  if  we  wish  to  print  the  strings  together  as  a  single  larger  string.  By  default,  the 
 value of collapse is NULL. 
 Syntax: 
 paste(..., sep=" ", collapse = NULL) 
 Example: 
 str <- paste("Learn", "Code") 
 print (str) 
 Output: 
 "Learn Code" 
 In  case  no  separator  is  specified  the  default  separator  ”  ”  is  inserted  between  individual 
 strings. 
 Example: 
 str <- paste(c(1:3), "4", sep = ":") 
 print (str) 
 Output: 
 "1:4" "2:4" "3:4" 
 2.  cat()  function  Different  types  of  strings  can  be  concatenated  together  using  the  cat()) 
 function  in  R,  where  sep  specifies  the  separator  to  give  between  the  strings  and  file  name, 
 in case we wish to write the contents onto a file. 
 Syntax: 
 cat(..., sep=" ", file) 
 Example: 
 str <- cat("learn", "c  ode", "tech", sep = ":") 
 print (str) 
 Output: 
 learn:code:techNULL 
 The  output  string  is  printed  without  any  quotes  and  the  default  separator  is  ‘:’.NULL 
 value is appended at the end. 
 Example: 
 cat(c(1:5), file ='sample.txt') 
 Output: 
 1 2 3 4 5 



 Calculating Length of strings 
 1.  length()  function  The  length()  function  determines  the  number  of  strings  specified  in 
 the function. 
 Example: 
 print (length(c("Learn to", "Code"))) 
 Output: 
 2 
 There are two strings specified in the function. 
 nchar()  function  nchar()  counts  the  number  of  characters  in  each  of  the  strings  specified 
 as arguments to the function individually. 
 Example: 
 print (nchar(c("Learn", "Code"))) 
 Output: 
 5  4 
 Case Conversion of strings 
 1.  Conversion  to  uppercase  All  the  characters  of  the  strings  specified  are  converted  to 
 upper case. 
 Example: 
 print (toupper(c("Learn Code", "hI"))) 
 2.  Conversion  to  lowercase  All  the  characters  of  the  strings  specified  are  converted  to 
 lowercase. 
 Example: 
 print (tolower(c("Learn Code", "hI"))) 
 Output : 
 "learn code" "hi" 
 3.  casefold()  function  All  the  characters  of  the  strings  specified  are  converted  to 
 lowercase  or  uppercase  according  to  the  arguments  in  casefold(…,  upper=TRUE). 
 Examples: 
 print (casefold(c("Learn Code", "hI"), upper = TRUE))) 
 Output : 
 "LEARN CODE" "HI" 




