
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Built-in Exceptions

Built-in exceptions are the exceptions which are available in Java libraries. These
exceptions are suitable to explain certain error situations. Below is the list of important
built-in exceptions in Java.

S. No. Exception Description

1. ArithmeticException
Thrown when a problem in arithmetic

operation is noticed by the JVM.

2. ArrayIndexOutOfBoundsException
Thrown when you access an array with

an illegal index.

3. ClassNotFoundException
Thrown when you try to access a class

which is not defined

4. FileNotFoundException
Thrown when you try to access a non-

existing file.

5. IOException
Thrown when the input-output

operation has failed or interrupted.

6. InterruptedException
Thrown when a thread is interrupted

when it is processing, waiting or sleeping

7. IllegalAccessException Thrown when access to a class is denied

8. NoSuchFieldException
Thrown when you try to access any field

or variable in a class that does not exist

9. NoSuchMethodException
Thrown when you try to access a non-

existing method.

10. NullPointerException
Thrown when you refer the members of

a null object

11. NumberFormatException
Thrown when a method is unable to

convert a string into a numeric format

12. StringIndexOutOfBoundsException
Thrown when you access a String array

with an illegal index.

A. Checked Exceptions:

 Checked exceptions are called compile-time exceptions because these exceptions are

checked at compile-time by the compiler.

 Checked Exceptions forces programmers to deal with the exception that may be thrown.

 The compiler ensures whether the programmer handles the exception using try.. catch ()

block or not. The programmer should have to handle the exception; otherwise,

compilation will fail and error will be thrown.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Example:

1. ClassNotFoundException

2. CloneNotSupportedException

3. IllegalAccessException,

4. MalformedURLException.

5. NoSuchFileException

6. NoSuchMethodException

7. IOException

Example Program: (Checked Exception)

FileNotFoundException is a checked exception in Java. Anytime, we want to read a file

from filesystem, Java forces us to handle error situation where file may not be present in

place.

Without try-catch

import java.io.*;

public class CheckedExceptionExample {
public static void main(String[] args)
{

FileReader file = new FileReader("src/somefile.txt");
}
}

Output:

Exception in thread "main" java.lang.Error: Unresolved compilation problem:
Unhandled exception type FileNotFoundException

To make program able to compile, you must handle this error situation in try-catch block.

Below given code will compile absolutely fine.

With try-catch
import java.io.*;

public class CheckedExceptionExample {
public static void main(String[] args) {
try {
@SuppressWarnings("resource")

FileReader file = new FileReader("src/somefile.java");
System.out.println(file.toString());
}

catch(FileNotFoundException e){
System.out.println("Sorry...Requested resource not availabe...");
} }

}

Output:

Sorry...Requested resource not availabe...

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

B. Unchecked Exceptions(RunTimeException):

 The unchecked exceptions are just opposite to the checked exceptions.
 Unchecked exceptions are not checked at compile-time rather they are checked

at runtime.
 The compiler doesn’t force the programmers to either catch the exception or

declare it in a throws clause.
 In fact, the programmers may not even know that the exception could be

thrown.

Example:

1. ArrayIndexOutOfBoundsException

2. ArithmeticException

3. NullPointerException.

Example: Unchecked Exception

Consider the following Java program. It compiles fine, but it

throws ArithmeticException when run. The compiler allows it to compile,

because ArithmeticException is an unchecked exception.

class Main {

public static void main(String args[]) {

int x = 0;

int y = 10;

int z = y/x;

}

}

Output:

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Main.main(Main.java:5)

Example 1: NullPointer Exception

//Java program to demonstrate NullPointerException

class NullPointer_Demo

{

public static void main(String args[])

{

try {

String a = null; //null value
System.out.println(a.charAt(0));

} catch(NullPointerException e) {
System.out.println("NullPointerException..");

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

}

}
}

Output:

NullPointerException..

Example 2: NumberFormat Exception

// Java program to demonstrate NumberFormatException

class NumberFormat_Demo

{

public static void main(String args[])

{

try {

// "akki" is not a number

int num = Integer.parseInt ("akki") ;
System.out.println(num);

} catch(NumberFormatException e) {
System.out.println("Number format exception");

}
}

}

Output:

Number format exception

Exception types created by the user to describe the exceptions related to their applications

are known as User-defined Exceptions or Custom Exceptions.

To create User-defined Exceptions:

1. Pick a self-describing *Exception class name.
2. Decide if the exception should be checked or unchecked.

 Checked : extends Exception
 Unchecked: extends RuntimeException

3. Define constructor(s) that call into super class constructor(s), taking message
that can be displayed when the exception is raised.

4. Write the code that might generate the defined exception inside the try-catch
block.

5. If the exception of user-defined type is generated, handle it using throw clause

as follows:

throw ExceptionClassObject;

3.5.2: USER-DEFINED EXCEPTIONS (CUSTOM EXCEPTIONS)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Example:

The following program illustrates how user-defined exceptions can be created and
thrown.

public class EvenNoException extends Exception

{
EvenNoException(String str)
{

super(str); // used to refer the superclass constructor
}

public static void main(String[] args)

{
int arr[]={2,3,4,5};

int rem;
int i;

for(i=0;i<arr.length;i++)
{
rem=arr[i]%2;

try

{
if(rem==0)
{

System.out.println(arr[i]+" is an Even Number");
}

else

{
EvenNoException exp=new EvenNoException(arr[i]+" is
not an Even Number");
throw exp;

}
}
catch(EvenNoException exp)
{
System.out.println("Exception thrown is "+exp);

}
} // for loop

} // main()
} // class

Output:

0 is an Even Number

Exception thrown is EvenNoException: 3 is not an Even Number
4 is an Even Number

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Exception thrown is EvenNoException: 5 is not an Even Number

Program Explanation:

In the above program, the EvenNumberException class is created which inherits the
Exception super class. Then the constructor is defined with the call to the super class
constructor. Next, an array arr is created with four integer values. In the main(), the array
elements are checked one by one for even number. If the number is odd, then the object of
EvenNumberException class is created and thrown using throw clause. The
EvenNumberException is handled in the catch block.

Basis for
comparison

final

finally

finalize

Basic Final is a "Keyword"
and "access modifier"
in Java.

Finally is a "block" in
Java.

Finalize is a "method"
in Java.

Applicable Final is a keyword
applicable to classes,
variables and methods.

Finally is a block that
is always associated
with try and catch
block.

finalize() is a method
applicable to objects.

Working (1) Final variable
becomes constant, and
it can't be reassigned.
(2) A final method
can't be overridden by
the child class.
(3) Final Class can not
be extended.

A "finally" block,
clean up the
resources used in
"try" block.

Finalize method
performs cleans up
activities related to the
object before its
destruction.

Execution Final method is
executed upon its call.

"Finally" block
executes just after the
execution of"try-
catch" block.

finalize() method
executes just before the
destruction of the
object.

Comparison Chart - final Vs. finally Vs. finalize

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Example class FinalExample{
public static void
main(String[] args){
final int x=100;
x=200;//Compile Time
Error
}}

class FinallyExample{
public static void
main(String[] args){
try{
int x=300;
}catch(Exception
e){System.out.println
(e);}
finally{
System.out.println("fi
nally block is
executed");
}
}}

class FinalizeExample{
public void
finalize(){System.out.pr
intln("finalize called");}
public static void
main(String[] args){
FinalizeExample
f1=new
FinalizeExample();
FinalizeExample
f2=new
FinalizeExample();
f1=null;
f2=null;
System.gc();
}}

	Built-in Exceptions
	A. Checked Exceptions:
	Example:
	Example Program: (Checked Exception)
	B. Unchecked Exceptions(RunTimeException):
	Example: (1)
	Example: Unchecked Exception
	Example 1: NullPointer Exception
	try {
	Output:
	Example 2: NumberFormat Exception
	try { (1)
	Output: (1)
	throw ExceptionClassObject;
	try
	else
	Output: (2)
	Exception thrown is EvenNoException: 3 is not an Even Number 4 is an Even Number
	Program Explanation:

