

INHERITANCE

 Inheritance is the mechanism
features of another class.

 It is process of deriving

 A class that is inherited
is called a subclass.

 Inheritance represents
relationship. The keyword

Syntax:

class Subclass-name

{

//methods and fields

}

Here, the extends keyword indicates
existing class.

Note: The constructors of the

Advantages of Inheritance:

 Code reusability - public

 Data hiding – private data

 Overriding--With inheritance,
class in the derived class

Example:

// Create a superclass.

class BaseClass

{

int a=10,b=20;

public void add()

{

System.out.println(“Sum:”+(a+b));

}
}

public class Main extends BaseClass

{

public void sub()

{

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

mechanism in java by which one class is allow to
class.

of deriving a new class from an existing class.

inherited is called a superclass and the class that does the

represents the IS-A relationship, also known as parent child
keyword used for inheritance is extends.

name extends Superclass-name

fields

indicates that we are creating a new class that derives

the superclass are never inherited by the subclass

public methods of base class can be reused in derived classes

data of base class cannot be altered by derived class

inheritance, we will be able to override the methods of

System.out.println(“Sum:”+(a+b));

BaseClass

AND TECHNOLOGY

PROGRAMMING

to inherit the

the inheriting

child

derives from an

classes

of the base

System.out.println(“Difference:”+(a

public static void main(String[]

{

Main obj=new Main();

obj.add();

obj.sub();

}

}

Sample Output:

Sum:30

Difference:-10

Types of inheritance

Single Inheritance :

In single inheritance, a subclass

Example:

class Shape{

int a=10,b=20;

}

class Rectangle extends Shape{

public void rectArea(){

System.out.println(“Rectangle

public class Main

{

public static void main(String[] args) {

Rectangle obj=new Rectangle();

obj.rectArea();

}}

ROHINI COLLEGE OF ENGINEERING AND

CS8392 OBJECT ORIENTED PROGRA

System.out.println(“Difference:”+(a-b));

main(String[] args)

subclass inherit the features of one superclass.

class Rectangle extends Shape{

System.out.println(“Rectangle Area:”+(a*b));

public static void main(String[] args) {

Rectangle();

AND TECHNOLOGY

MMING PROGRA

Multilevel Inheritance:
In Multilevel Inheritance, a derived

derived class also act as the base class to other class i.e. a derived class in turn acts as a base
class for another class.

Example:

class Numbers{

int a=10,b=20;

}

class Add2 extends Numbers{

int c=30;

public void sum2(){

System.out.println(“Sum

}

}

class Add3 extends Add2{

public void sum3(){

System.out.println(“Sum

}

}

public class Main

{

public static void main(String[] args) {

Add3 obj=new Add3();

obj.sum2();

obj.sum3();

}

}

Sample Output: Sum

of 2 nos.:30Sum of

3 nos.:60

Hierarchical Inheritance:

In Hierarchical Inheritance, one
one sub class.

Example:

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

derived class will be inheriting a base class and as
derived class also act as the base class to other class i.e. a derived class in turn acts as a base

Numbers{

System.out.println(“Sum of 2 nos.:”+(a+b));

System.out.println(“Sum of 3 nos.:”+(a+b+c));

public static void main(String[] args) {

Add3();

Inheritance:

one class serves as a superclass (base class) for

AND TECHNOLOGY

PROGRAMMING

as well as the
derived class also act as the base class to other class i.e. a derived class in turn acts as a base

for more than

class Shape{

int a=10,b=20;

}

class Rectangle extends Shape{

public void rectArea(){

System.out.println(“Rectangle

}

}

class Triangle extends Shape{

public void triArea(){

System.out.println(“Triangle

}

}

public class Main

{

public static void main(String[] args) {

Rectangle obj=new Rectangle();

obj.rectArea();

Triangle obj1=new Triangle();

obj1.triArea();

}

}

Sample Output: Rectangle

Area:200Triangle

Area:100.0

Multiple inheritance
Java does not allow multiple

 To reduce the complexity

 To avoid the ambiguity caused

For example, Consider a class C derived from two base classes A and B. Class C inheritsA
and B features. If A and B have a method with same signature, there will be ambiguity to call
method of A or B class. It will result

class A{

void msg(){System.out.println(“Class

}

class B{

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

class Rectangle extends Shape{

System.out.println(“Rectangle Area:”+(a*b));

Shape{

System.out.println(“Triangle Area:”+(0.5*a*b));

public static void main(String[] args) {

Rectangle();

Triangle();

 inheritance:

complexity and simplify the language

caused by multiple inheritance

For example, Consider a class C derived from two base classes A and B. Class C inheritsA
and B features. If A and B have a method with same signature, there will be ambiguity to call

result in compile time error.

msg(){System.out.println(“Class A”);}

AND TECHNOLOGY

PROGRAMMING

For example, Consider a class C derived from two base classes A and B. Class C inheritsA
and B features. If A and B have a method with same signature, there will be ambiguity to call

void msg(){System.out.println(“Class

}

class C extends A,B{//suppose if it were

Public Static void main(String args[]){C

obj=new C();

obj.msg();//Now which msg()

}

}

Sample Output:

Compile time error

Direct implementation of multiple inheritance is not allowed in Java. But it is achievable
using Interfaces. The concept about

Access Control in Inheritance
The following rules for inherited

 Variables declared public

 Variables or Methods declared

 Methods declared public

 Methods declared protected
subclasses; they cannot be

Example:

// Create a superclass

class A{

int x; // default

private int y; // private

public void set_xy(int a,int b){

x=a;

y=b;

}

}

// A’s y is not accessible here.

class B extends A{

public void add(){

System.out.println(“Sum:”+(x+y));

}

}

class Main{

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

msg(){System.out.println(“Class B “);}

class C extends A,B{//suppose if it were

Public Static void main(String args[]){C

msg() method would be invoked?

error

Direct implementation of multiple inheritance is not allowed in Java. But it is achievable
about interface is discussed in chapter.2.7.

Inheritance
inherited methods are enforced −

public or protected in a superclass are inheritable in subclasses.

declared private in a superclass are not inherited at all.

 in a superclass also must be public in all subclasses.

protected in a superclass must either be protected or
they cannot be private.

default specifier

private to A

public void set_xy(int a,int b){

here.

System.out.println(“Sum:”+(x+y)); //Error: y has private access in A – not inheritable

AND TECHNOLOGY

PROGRAMMING

Direct implementation of multiple inheritance is not allowed in Java. But it is achievable

subclasses.

all.

subclasses.

 public in

not inheritable

public static void main(String args[]){B

obj=new B();

obj.set_xy(10,20);

obj.add();

}

}

In this example since y is declared
bers. Subclasses have no access to

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

public static void main(String args[]){B

declared as private, it is only accessible by its own
to it.

AND TECHNOLOGY

PROGRAMMING

own class mem-

