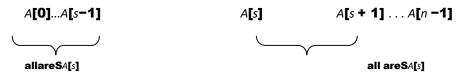
QUICK SORT

Quicksort is the other important sorting algorithm that is based on the divide-andconquer approach. quicksort divides input elements according to their value. A partition is an arrangement of the array's elements so that all the elements to the left of some element A[s]are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal to it:



Sort the two subarrays to the left and to the right of A[s] independently. No work required to combine the solutions to the sub problems.

Here is pseudocode of quicksort: call Quicksort(A[0..n - 1]) where As a partition algorithm use the *Hoare Partition*.

ALGORITHM Quicksort(A[lur])

//Sorts a subarray by quicksort

//Input: Subarray of array A[0..n-1], defined by its left and right indices l and r //Output: Subarray $A[l_{uv}r]$ sorted in non-decreasing order if l < r

 $s \leftarrow Hoare Partition(A[l_ur]) //s is a split position$

Quicksort(A[lus - 1])

Quicksort(A[s + 1..r])

		1-	>		<i>←</i>]	
p	all are $\leq p$	$\geq p$	≥p		≤p	all are $\geq p$
		1			1	
		÷	— j	i -	÷	
D	all are $\leq p$		≤p	≥p		all are $\geq p$
•			1			
			← j =	$i \rightarrow$		
D	all are $\leq p$		=p		all are $\geq p$	

ALGORITHM Hoare Partition(A[lur])

//Partitions a subarray by Hoare's algorithm, using the first element as a pivot //Input: Subarray of array A[0..n-1], defined by its left and right indices l and r (l < r) //Output: Partition of $A[l_{ur}]$, with the split position returned as this function's value $p \leftarrow A[l]$

```
\begin{split} i \leftarrow l; j \leftarrow r+1 \\ \textbf{repeat} \\ \textbf{repeat} \\ \textbf{repeat} \ i \leftarrow i+1 \ \textbf{until} \ A[i] \ge p \\ \textbf{repeat} \ j \leftarrow j-1 \ \textbf{until} \ A[j] \le p \\ swap(A[i], \ A[j]) \\ \textbf{until} \ i \ge j \\ swap(A[i], \ A[j]) // \textbf{undo} \ last \ swap \ when \ i \ge j \\ swap(A[l], \ A[j]) \\ \textbf{return} \ j/ \end{split}
```

0	1	2	3	4	5	6	7
5	1 <i>i</i> 3	1	9	8	2	4	<i>j</i> 7
5	3	1	9 ; 9	8	2	4 j 4 j 9	7 7 7
5	3	1	<i>i</i> 4	8		<i>j</i> 9	7
5	3	1	4	<i>i</i> 8	<i>j</i> 2	9	7
5	3	1	4	8 8 2 2 2 5	2 j2 j8 i 8 8	9	7
5	З	1 1	4	<i>j</i> 2	<i>i</i> 8	9	7
2	3	1	4	5	8	9	7
2	3 i 3 i 3 i 1 j 1	1	4 <i>j</i> 4				
2	<i>i</i> 3	1 <i>j</i> 1 <i>j</i> 3 <i>i</i> 3 3	4				
2	1	j 3	4				
2	<i>j</i> 1	i 3	4				
1	2	3	4				
		3	<i>ij</i> 4				
		3 j 3	<i>ij</i> 4 4 4				
			4				
					8	<i>i</i> 9	j 7
					8	i 9 i 7 j 7	; 7 ; 9 ; 9
					8	$\frac{j}{7}$	<i>i</i> 9
					7	8	9
					7 7		
							9

AD3351 | DESIGN AND ANALYISIS OF ALGORITHMS

FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.

AD3351 | DESIGN AND ANALYISIS OF ALGORITHMS

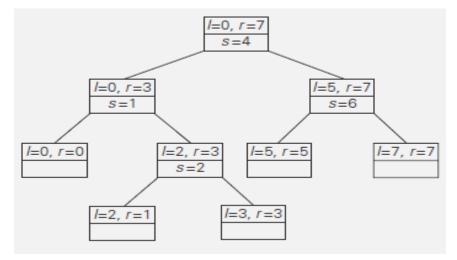


FIGURE 2.12 Tree of recursive calls to *Quicksort* with input values *l* and *r* of subarray bounds and split position *s* of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence

 $C_{\text{best}}(n) = 2C_{\text{best}}(n/2) + n \text{ for } n > 1, \qquad C_{\text{best}}(1) = 0.$

By Master Theorem, $C_{best}(n) \in \Theta(n \log_2 n)$; solving it exactly for $n = 2^k$ yields $C_{best}(n) = n \log_2 n$. The total number of key comparisons made will be equal to

Cworst(*n*) = (*n* + 1) + *n* + . . . + 3 = ((*n* + 1)(*n* + 2))/2− 3 ∈ $\Theta(n^2)$.

$$C_{avg}(n) = \frac{1}{n} \sum_{s=0}^{n-1} [(n+1) + C_{avg}(s) + C_{avg}(n-1-s)] \text{ for } n > 1,$$

$$C_{avg}(0) = 0, \quad C_{avg}(1) = 0.$$

 $C_{avg}(n) \approx 2n \ln n \approx 1.39n \log_2 n.$