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QUICK SORT

Quicksort is the other important sorting algorithm that is based on the divide-and-
conquer approach. quicksort divides input elements according to their value. A partition is an
arrangement of the array’s elements so that all the elements to the left of some element A[S]

are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal

to it:
A[0]...A[s=1] Als] Als+ 1] ... A[n -1]
allareSA[s] all areSA[s]

Sort the two subarrays to the left and to the right of A[s] independently. No work
required to combine the solutions to the sub problems.

Here is pseudocode of quicksort: call Quicksort(A[0..n — 1]) where As a partition algorithm use

the Hoare Partition.

ALGORITHM Quicksort(A[L.z])
//Sorts a subarray by quicksort
//Input: Subarray of array A[0..n — 1], defined by its left and right indices / and »
//Output: Subarray A[/, ;] sorted in non-decreasing order

if/ <»

s +——Hoare Partition(A[l,r]) //s 1s a split position
Quicksi(All.s— 11
Quicksort(A[s + 1..7])

p allare<p >p ‘e <p allare>p

r= JJ- =
p allare<p <p >p allare=p
D allare<p =p allare>p
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ALGORITHM Hoare Partition(A[l,;])
//Partitions a subarray by Hoare's algorithm, using the first element as a ptvot
//Input: Subarray of array 4[0..n — 1], defined by 1ts left and right indices [ and » (1<7)
//Output: Partition of 4[], z]. with the split position returned as this function’s value
pAll
j—ljertl
repeat
repeat ; —i + | until A[i]=p
repeat j < — 1 until 4[j ]=p
swap(A[i], A }
until { =
swap(A[i], 4[ 1) //undo last swap when j =
swap(A[l], A 1

return j/
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FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.
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FIGURE 2.12 Tree of recursive calls to Quicksort with input values / and r of subarray bounds

and split position s of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence
Chest(n) = 2Chest(n/2) + n for n>1, Chest(1) =0.
By Master Theorem, Chest(n) € O(n logy n); solving it exactly for n = 2¥ yields Cpest(n) = n
logz n. The total number of key comparisons made will be equal to
Cworst(n)=(n+1)+n+...+3=((n+1)(n+2))/2- 3 €O(n?).

n—1
Capeln) =— Z[{.r: + 1) + Cayels) + Capeln — 1 —5)] form =1,
s=0

Cag(0) =0, C,ye(1)=0.

Clrrg{-’” = 2nlnn == 1.3% IDE-E n.
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