
AD3351 | DESIGN AND ANALYISIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

QUICK SORT

Quicksort is the other important sorting algorithm that is based on the divide-and-

conquer approach. quicksort divides input elements according to their value. A partition is an

arrangement of the array’s elements so that all the elements to the left of some element A[s]

are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal

to it:

A[0]...A[s−1] A[s] A[s + 1] . . . A[n −1]

allareSA[s] all areSA[s]

Sort the two subarrays to the left and to the right of A[s] independently. No work

required to combine the solutions to the sub problems.

Here is pseudocode of quicksort: call Quicksort(A[0..n − 1]) where As a partition algorithm use

the Hoare Partition.

AD3351 | DESIGN AND ANALYISIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

AD3351 | DESIGN AND ANALYISIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.

AD3351 | DESIGN AND ANALYISIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

FIGURE 2.12 Tree of recursive calls to Quicksort with input values l and r of subarray bounds

and split position s of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence

Cbest(n) = 2Cbest(n/2) + n for n>1, Cbest(1) =0.

By Master Theorem, Cbest(n) ∈ Θ(n log2 n); solving it exactly for n = 2k yields Cbest(n) = n

log2 n. The total number of key comparisons made will be equal to

Cworst(n) = (n + 1) + n + . . . + 3 = ((n + 1)(n + 2))/2− 3 ∈Θ(n2).

