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QUICK SORT 

Quicksort is the other important sorting algorithm that is based on the divide-and- 

conquer approach. quicksort divides input elements according to their value. A partition is an 

arrangement of the array’s elements so that all the elements to the left of some element A[s] 

are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal 

to it: 

A[0]...A[s−1] A[s] A[s + 1] . . . A[n −1] 
 

allareSA[s] all areSA[s] 

 

Sort the two subarrays to the left and to the right of A[s] independently. No work 

required to combine the solutions to the sub problems. 

Here is pseudocode of quicksort: call Quicksort(A[0..n − 1]) where As a partition algorithm use 

the Hoare Partition. 
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FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold. 
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FIGURE 2.12 Tree of recursive calls to Quicksort with input values l and r of subarray bounds 

and split position s of a partition obtained. 

The number of key comparisons in the best case satisfies the recurrence 

Cbest(n) = 2Cbest(n/2) + n for n>1, Cbest(1) =0. 

By Master Theorem, Cbest(n) ∈ Θ(n log2 n); solving it exactly for n = 2k yields Cbest(n) = n 

log2 n. The total number of key comparisons made will be equal to 

Cworst(n) = (n + 1) + n + . . . + 3 = ((n + 1)(n + 2))/2− 3 ∈Θ(n2). 

 


