SUBSPACES

Definition :

Let V be a vector space and U be a non-empty subset of V . If U is a vector space under the operation of addition and scalar multiplication of V , then it is said to be a subspace of V .

Note:
(i) $\quad\{0\}$ and V itself are called trivial subspaces.
(ii) All other vector subspace of V are called non-trivial subspaces.

Note :
(i) A non-empty subset U of a vector space V over F is called subspace of V, if $u+v \in U$ and $\alpha u \in U$ for all $u, v \in U$ and $\alpha \in F$ or simply

$$
\alpha u+\beta v \in U \text { and } \alpha, \beta \in F
$$

(ii) $\{0\}$ is a subspace of V called zero subspace.
(iii) V is a subspace of its own.
(iv) $\{0\}$ and V are called trivial subspace (or) improper subspaces.
(v) Any subspace other than $\{0\}$ and V are called proper subspaces of V (or) non-trivial subspaces.
(vi) The vectors lying on a line L through the origin R^{2} are subspaces of the vector space.
(vii) A non-empty subset U of vector space V is a subspace iff $u+\alpha v \in U$ for any $v \in U$ and $\alpha \in F$.

Theorem: 1.

Let w_{1} and w_{2} be two subspaces of vector space V over F. Then $w_{1} \cap w_{2}$ is a subspace of V.

Proof :

As $0 \in w_{1} \cap w_{2}, w_{1} \cap w_{2}$ is non-empty.

Consider $u, v \in w_{1} \cap w_{2}, \alpha \in F$.

Then $\mathrm{u}, \mathrm{v} \in w_{1}, \alpha \in F$ and $\mathrm{u}, \mathrm{v} \in w_{2}, \alpha \in F$
$u+\alpha v \in w_{1}$ and $u+\alpha v \in w_{2}$

So, $\mathrm{u}+\alpha \mathrm{v} \in \mathrm{w}_{1} \cap w_{2}$

Hence $w_{1} \cap w_{2}$ is a subspace of V.

PROBLEMS BASED ON SUBSPACES

1. Let $\mathrm{V}=\mathrm{R}^{3}$. The XY -plane $\mathrm{w}_{1}=\{(\mathrm{x}, \mathrm{y}, 0): \mathrm{x}, \mathrm{y} \in R\}$ and the XZ-plane $\mathrm{w}_{2}=\{(\mathrm{x}, 0, \mathrm{z}): \mathrm{x}, \mathrm{z} \in R\}$. These are subspace of R^{3}. Then $\mathrm{w}_{1} \cap \mathrm{w}_{2}=$ $\{(\mathrm{x}, 0,0): \mathrm{x} \in R\}$ is the x -axis.

Solution :

$$
\text { Let } \mathrm{v} \in \mathrm{~V}, \mathrm{v}=(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{V}
$$

$$
\mathrm{v}=(\mathrm{x}, \mathrm{y}, 0)+(0,0, \mathrm{z}) \in \mathrm{w}_{1}+w_{2}
$$

$$
\mathrm{So}, \mathrm{~V} \subseteq \mathrm{w}_{1}+w_{2} \subseteq \mathrm{~V}
$$

Hence $V=w_{1}+w_{2}$
2. Express the polynomial $3 \mathrm{t}^{2}+5 \mathrm{t}-5$ as a linear combination of the

$$
\text { polynomials } t^{2}+2 t+1,2 t^{2}+5 t+4, t^{2}+3 t+6
$$

Solution :

Let $a, b, c \in \mathrm{~F}$ such that

$$
\begin{aligned}
& 3 t^{2}+5 t-5=a\left(t^{2}+2 t+1\right)+b\left(2 t^{2}+5 t+4\right)+c\left(t^{2}+3 t+6\right) \\
& 3 t^{2}+5 t-5=(a+2 b+c) t^{2}+(2 a+5 b+3 c) t+(a+4 b+6 c)
\end{aligned}
$$

Comparing the co-efficients, we get

$$
\begin{equation*}
a+2 b+c=3 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
2 a+5 b+3 c=5 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
a+4 \dot{v}+6 c=-5 \tag{3}
\end{equation*}
$$

$(3)-(1) \Rightarrow$
$2 b+5 c=-8$

Multiply (1) by 2,

$$
\begin{equation*}
2 a+4 b+2 c=6 \tag{5}
\end{equation*}
$$

$$
(2)-(5) \Rightarrow b+c=-1 \ldots(6)
$$

Multiply (6) by 2,

$$
\begin{equation*}
2 b+2 c=-2 \tag{7}
\end{equation*}
$$

$$
(4)-(7) \Rightarrow 3 c=-6
$$

$$
\therefore c=-2
$$

Substituting c in (6),

$$
\begin{gathered}
b-2=-1 \\
b=2-1=1 \\
\therefore b=1
\end{gathered}
$$

Substituting c, b in (1)

$$
\begin{gathered}
\qquad a+2(1)-2=3 \\
a+2-2=3 \\
\Rightarrow a=3 \\
\therefore a=3, b=1, c=-2 \\
\text { Hence, } 3 t^{2}+5 t-5=3\left(t^{2}+2 t+1\right)+1\left(2 t^{2}+5 t+4\right) \\
-2\left(t^{2}+3 t+6\right)
\end{gathered}
$$

3. Let $V=R^{3}$, then which of the following sets is/are subspace(s) of V.
(i) $w_{1}=\{(a, b, 0) ; a, b \in \mathbf{R}\}$
(ii) $w_{2}=\{(a, b, 0) ; a \geq 0\}$

Solution :

$$
\begin{equation*}
\overline{0}=(0,0,0) \in w_{1} \text {, so } w_{1} \neq \phi \tag{i}
\end{equation*}
$$

Let $v_{1}, v_{2} \in w_{1}, \alpha \in \mathrm{R}$
Then, $v_{1}=(a, b, 0)$ and $v_{2}=(c, d, 0)$ for some $a, b, c, d \in \mathbb{R}$

$$
\begin{gathered}
v_{1}+v_{2}=(a+c, b+d, 0) \in w_{1} \\
\alpha v_{1}=(\alpha a, \alpha b, 0) \in w_{1}
\end{gathered}
$$

Hence w_{1} is a subspace of V.
(ii) Consider $w_{2}=\{(a, b, 0) ; a \geq 0\}$

Here we should take the value of a as zero or positive.

$$
\text { Let } V=(2,1,0) \in w_{2}
$$

But under scalar multiplication, the vector is not in w_{2}

That is $-v=(-2,-1,0) \notin \mathrm{w}_{2}$

$$
(-1) \mathrm{v} \notin \mathrm{w}_{2}
$$

Hence w_{2} is not a subspace of V
4. Let V be a vector space of all 2×2 matrices over real numbers. Determine whether W is a subspace of V or not, where
(i) W consists of all matrices with non-zero determinant.
(ii) W consists of all matrices A such that $A^{2}=A$.

Solution :
(i) Let $w=\left\{\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right]: x, y \in \mathbb{R}\right\}$

$$
\text { Since }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \in \mathrm{W}, \mathrm{~W} \text { is a non-empty subset of } \mathrm{V} \text {. }
$$

Consider $A=\left[\begin{array}{cc}x_{1} & 0 \\ 0 & y_{1}\end{array}\right], B=\left[\begin{array}{cc}x_{2} & 0 \\ 0 & y_{2}\end{array}\right] \in W$ and $\alpha, \beta \in R$

$$
\begin{gathered}
\alpha A=\left[\begin{array}{cc}
\alpha x_{1} & 0 \\
0 & \alpha y_{1}
\end{array}\right] \text { and } \alpha B=\left[\begin{array}{cc}
\beta x_{2} & 0 \\
0 & \beta y_{2}
\end{array}\right] \\
\alpha A+\beta B=\left[\begin{array}{cc}
\alpha x_{1}+\beta x_{1} & 0 \\
0 & \alpha y_{1}+\beta y_{2}
\end{array}\right] \in \mathrm{W}
\end{gathered}
$$

Hence W is a subspace of V.
(ii) W is not a subspace of V because w is not closed under addition.

Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, so that

$$
A^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1+0 & 0+0 \\
0+0 & 0+0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=A
$$

$\therefore A \in W$

$$
\text { But } A+A=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right] \neq A+A
$$

$$
\text { Thus } \mathrm{A}+\mathrm{A} \notin \mathrm{~W}
$$

7. Let $\mathbf{V}=\left\{\mathbf{A} / \mathbf{A}=\left[a_{i j}\right]_{n \times n^{\prime}}, a_{i j} \in \mathbf{R}\right\}$ be a vector space over \mathbf{R}. Show $W=$ $\{\mathbf{A} \in \mathbf{V} / \mathbf{A X}=\mathbf{X A}$ for all $\mathbf{A} \in \mathbf{V}\}$ is a sub-space of $\mathbf{V}(\mathbf{R})$

Solution :
Since $0 \mathrm{X}=0=\mathrm{X} 0$ for all $\mathrm{X} \in \mathrm{V}$
$\Rightarrow 0 \in \mathrm{~W}$. Thus W is non-empty.
Now, let $\alpha, \beta \in R$ and $A_{1}, A_{2} \in W$
$\Rightarrow A_{1} X=X A_{1}$ and $A_{2} X=X A_{2}$ for all $X \in V$
$\therefore\left(\alpha A_{1}+\beta A_{2}\right) X=\left(\alpha A_{1}\right) X+\left(\beta A_{2}\right) X$

$$
\begin{aligned}
& =\alpha\left(A_{1} X\right)+\beta\left(A_{2} X\right) \\
& =\alpha\left(\mathrm{XA}_{1}\right)+\beta\left(\mathrm{XA}_{2}\right) \\
& =\mathrm{X}\left(\alpha \mathrm{~A}_{1}\right)+\mathrm{X}\left(\beta \mathrm{~A}_{2}\right) \\
& =\mathrm{X}\left(\alpha \mathrm{~A}_{1}+\beta \mathrm{A}_{2}\right) \\
& =\alpha \mathrm{A}_{1}+\beta \mathrm{A}_{2} \in \mathrm{~W}
\end{aligned}
$$

Hence W is a vector space of $V(R)$.

Theorem : 3. If S is any subset of a vector space $V(F)$, then S is a subspace of $V(F)$ if and only if $L(S)=S$.

Proof:

Given S is a subspace of $V(F)$

To prove $L(S)=S$

Let $x \in \mathrm{~L}(\mathrm{~S}) \Rightarrow$ there exists $x_{1}, \ldots, x_{\mathrm{n}} \in \mathrm{S}$

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{n}} \in \mathrm{~F}
$$

$$
x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{\mathrm{n}} x_{\mathrm{n}} \in \mathrm{~S}
$$

$$
\begin{equation*}
\mathrm{L}(\mathrm{~S}) \subset \mathrm{S} \tag{1}
\end{equation*}
$$

$$
\text { Also } S \subset L(S) \ldots(2)[\text { Since } S \text { is a subspace of } V(F)]
$$

From (1) and (2), L(S) = S

Conversely, Given $L(S)=S$

To prove: S is a subspace of $V(F)$

Since $L(S)$ is a subspace of $V(F)$
$\therefore \mathrm{S}$ is also a subspace of $\mathrm{V}(\mathrm{F})$
8. Let V be the set of all solutions of the differential equation $2 y^{\prime \prime}-7 y^{\prime}+$ $3 y=0$. Then V is a vector space over R.

Solution :
Let $f, g \in V$ and $\alpha \in R$.
Then $2 f^{\prime \prime}-7 f^{\prime}+3 f=0$ and

$$
2 g^{\prime \prime}-7 g^{\prime}+3 g=0
$$

$2 \frac{d^{2}}{d x^{2}}(f+g)-7 \frac{d}{d x}(f+g)+3(f+g)=0$

Hence $f+g \in \mathrm{~V}$

Also $2(\alpha f)^{n}-7(\alpha f)^{\prime}+3(\alpha f)=0$

Hence $\alpha f \in V$
Hence V is a vector space over R.

9 Examine whether $(1,-3,5)$ belongs to the linear space generated by S,
where $S=\{(1,2,1),(1,1,-1),(4,5,-2)\}$ or not?
Solution :
Suppose (1, $-3,5$) belongs to S.
\therefore There exists scalars α, β, γ such that
$(1,-3,5)=\alpha(1,2,1)+\beta(1,1,-1)+\gamma(4,5,-2)$
$(1,-3,5)=(\alpha+\beta+4 \gamma, 2 \alpha+\beta+5 \gamma, \alpha-\beta-2 \gamma)$

Comparing both sides, we get

$$
\begin{align*}
& \alpha+\beta+4 \gamma=1 \\
& 2 \alpha+\beta+5 \gamma=-3 \tag{2}\\
& \alpha-\beta-2 \gamma=5 \ldots . \tag{3}
\end{align*}
$$

Adding (1) and (3), we get

$$
\begin{equation*}
2 \alpha+2 \gamma=6 \Rightarrow \alpha+\gamma=3 \tag{4}
\end{equation*}
$$

Adding (2) and (3), we get

$$
3 \alpha+3 \gamma=2 \Rightarrow \alpha+\gamma=\frac{2}{3} \ldots
$$

Equation (4) and (5) are contradiction
Hence $(1,-3,5)$ does not belong to linear space of S.
Remark :

The union of the subspace may not be a sub-space.

