SUBSPACES

Definition :

Let V be a vector space and U be a non-empty subset of V. If U is a vector space under the operation of addition and scalar multiplication of V, then it is said to be a subspace of V.

Note:

- (i) $\{0\}$ and V itself are called trivial subspaces.
- (ii) All other vector subspace of V are called non-trivial subspaces.

Note :

(i) A non-empty subset U of a vector space V over F is called subspace of V, if $u + v \in U$ and $\alpha u \in U$ for all u, $v \in U$ and $\alpha \in F$ or simply

 $\alpha u + \beta v \in U$ and $\alpha, \beta \in F$

- (ii) $\{0\}$ is a subspace of V called zero subspace.
- (iii) V is a subspace of its own.
- (iv) {0} and V are called trivial subspace (or) improper subspaces.
- (v) Any subspace other than{0} and V are called proper subspaces of V(or) non-trivial subspaces.
- (vi) The vectors lying on a line L through the origin R² are subspaces of the vector space.

(vii) A non-empty subset U of vector space V is a subspace iff $u + \alpha v \in U$

for any $v \in U$ and $\alpha \in F$.

Theorem : 1.

Let w_1 and w_2 be two subspaces of vector space V over F. Then $w_1 \cap w_2$ is a subspace of V.

Proof :

As $0 \in w_1 \cap w_2, w_1 \cap w_2$ is non-empty.

Consider $u, v \in w_1 \cap w_2, \alpha \in F$.

Then u, $v \in w_1, \alpha \in F$ and $u, v \in w_2, \alpha \in F$

 $u + \alpha v \in w_1$ and $u + \alpha v \in w_2$

So, $u + \alpha v \in w_1 \cap w_2$

Hence $w_1 \cap w_2$ is a subspace of V.

PROBLEMS BASED ON SUBSPACES

1. Let $V = R^3$. The XY-plane $w_1 = \{(x,y,0) : x, y \in R \}$ and the XZ-plane

 $w_2 = \{(x,0,z) : x, z \in R \}$. These are subspace of \mathbb{R}^3 . Then $w_1 \cap w_2 =$

 $\{(x,0,0) : x \in R \}$ is the x-axis.

Solution :

Let $v \in V$, $v = (x, y,z) \in V$

$$v = (x, y, 0) + (0, 0, z) \in w_1 + w_2$$

So, $V \subseteq w_1 + w_2 \subseteq V$

Hence $V = w_1 + w_2$

2. Express the polynomial $3t^2 + 5t - 5$ as a linear combination of the polynomials $t^2 + 2t + 1, 2t^2 + 5t + 4, t^2 + 3t + 6$

Solution :

Let $a, b, c \in F$ such that

$$3t^{2} + 5t - 5 = a(t^{2} + 2t + 1) + b(2t^{2} + 5t + 4) + c(t^{2} + 3t + 6)$$

$$3t^{2} + 5t - 5 = (a + 2b + c)t^{2} + (2a + 5b + 3c)t + (a + 4b + 6c)$$

Comparing the co-efficients, we get

 $a + 2b + c = 3 \dots (1)$ $2a + 5b + 3c = 5 \dots (2)$

$$a + 4\dot{v} + 6c = -5$$
 ...(3)

 $(3) - (1) \Rightarrow \qquad 2b + 5c = -8 \dots (4)$

Multiply (1) by 2,

$$2a + 4b + 2c = 6$$
(5)

$$(2) - (5) \Longrightarrow b + c = -1 \dots (6)$$

Multiply (6) by 2,

$$2b + 2c = -2 \dots (7)$$

(4) - (7) $\Rightarrow 3c = -6$

$$\therefore c = -2^{ER/N}$$

Substituting c in (6),

b - 2 = -1b = 2 - 1 = 1 $\therefore b = 1$

Substituting c, b in (1) a + 2(1) - 2 = 3 a + 2 - 2 = 3 $\Rightarrow a = 3$ $\therefore a = 3, b = 1, c = -2$

Hence, $3t^2 + 5t - 5 = 3(t^2 + 2t + 1) + 1(2t^2 + 5t + 4)$

 $-2(t^2+3t+6)$

3. Let $V = R^3$, then which of the following sets is/are subspace(s) of V.

(i)
$$w_1 = \{(a, b, 0); a, b \in \mathbf{R}\}$$

(ii)
$$w_2 = \{(a, b, 0); a \ge 0\}$$

Solution :

(i)
$$\overline{0} = (0,0,0) \in w_1$$
, so $w_1 \neq \phi$

Let $v_1, v_2 \in w_1, \alpha \in \mathbb{R}$

Then, $v_1 = (a, b, 0)$ and $v_2 = (c, d, 0)$ for some $a, b, c, d \in \mathbb{R}$

$$v_1 + v_2 = (a + c, b + d, 0) \in w_1$$

$$\alpha v_1 = (\alpha a, \alpha b, 0) \in w_1$$

Hence w_1 is a subspace of V.

(ii) Consider
$$w_2 = \{(a, b, 0); a \ge 0\}$$

Here we should take the value of a as zero or positive.

Let $V = (2,1,0) \in w_2$

But under scalar multiplication, the vector is not in w₂

That is $-v = (-2, -1, 0) \notin w_2$

 $(-1)v \notin w_2$

Hence w_2 is not a subspace of V

4. Let V be a vector space of all 2×2 matrices over real numbers. Determine whether W is a subspace of V or not, where (i) W consists of all matrices with non-zero determinant.

(ii) W consists of all matrices A such that
$$A^2 = A$$
.

Solution :

(i) Let
$$w = \left\{ \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} : x, y \in \mathbb{R} \right\}$$

Since $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in W, W$ is a non-empty subset of V.
Consider $A = \begin{bmatrix} x_1 & 0 \\ 0 & y_1 \end{bmatrix}, B = \begin{bmatrix} x_2 & 0 \\ 0 & y_2 \end{bmatrix} \in W$ and $\alpha, \beta \in R$
 $\alpha A = \begin{bmatrix} \alpha x_1 & 0 \\ 0 & \alpha y_1 \end{bmatrix}$ and $\alpha B = \begin{bmatrix} \beta x_2 & 0 \\ 0 & \beta y_2 \end{bmatrix}$
 $\alpha A + \beta B = \begin{bmatrix} \alpha x_1 + \beta x_1 & 0 \\ 0 & \alpha y_1 + \beta y_2 \end{bmatrix} \in W$

Hence W is a subspace of V.

SERVE OPTIMIZE OUTSPREN

(ii) W is not a subspace of V because w is not closed under addition.

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, so that
 $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 0+0 \\ 0+0 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = A$
 $\therefore A \in W$
But $A + A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$

$$= \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} \neq \mathbf{A} + \mathbf{A}$$

Thus $A + A \notin W$

7. Let $\mathbf{V} = \{\mathbf{A}/\mathbf{A} = [a_{ij}]_{n \times n}, a_{ij} \in \mathbf{R}\}$ be a vector space over \mathbf{R} . Show W =

 ${A \in V/AX = XA \text{ for all } A \in V}$ is a sub-space of V(R)

Solution :

Since
$$0X = 0 = X0$$
 for all $X \in V$
 $\Rightarrow 0 \in W$. Thus W is non-empty.
Now, let $\alpha, \beta \in R$ and $A_1, A_2 \in W$
 $\Rightarrow A_1X = XA_1$ and $A_2X = XA_2$ for all $X \in V$
 $\therefore (\alpha A_1 + \beta A_2)X = (\alpha A_1)X + (\beta A_2)X$
 $= \alpha(A_1X) + \beta(A_2X)$
 $= \alpha(XA_1) + \beta(XA_2)$
 $= X(\alpha A_1) + X(\beta A_2)$
 $= X(\alpha A_1 + \beta A_2)$
 $= \alpha(A_1 + \beta A_2)$

Hence W is a vector space of V(R).

Theorem : 3. If S is any subset of a vector space V(F), then S is a subspace of

V(F) if and only if L(S) = S.

Proof:

Given S is a subspace of V(F)

To prove L(S) = S

Let $x \in L(S) \Rightarrow$ there exists $x_1, ..., x_n \in S$

 $\alpha_1,\alpha_2,\ldots,\alpha_n\in F$

 $x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \in S$

 $L(S) \subset S \dots (1)$

Also $S \subset L(S) \dots (2)$ [Since S is a subspace of V(F)]

From (1) and (2), L(S) = S

Conversely, Given L(S) = S

To prove: S is a subspace of V(F)

Since L(S) is a subspace of V(F)

 \therefore S is also a subspace of V(F)

8. Let V be the set of all solutions of the differential equation 2y'' - 7y' +

3y = 0. Then V is a vector space over R.

Solution :

Let $f, g \in V$ and $\alpha \in R$.

Then
$$2f'' - 7f' + 3f = 0$$
 and

2g'' - 7g' + 3g = 0

$$2\frac{d^2}{dx^2}(f+g) - 7\frac{d}{dx}(f+g) + 3(f+g) = 0$$

Hence $f + g \in V$

Also
$$2(\alpha f)^n - 7(\alpha f)' + 3(\alpha f) = 0$$

Hence $\alpha f \in V$

Hence V is a vector space over R.

9 Examine whether (1, -3, 5) belongs to the linear space generated by S,

where
$$S = \{(1,2,1), (1,1,-1), (4,5,-2)\}$$
 or not?

Solution :

Suppose (1, -3, 5) belongs to S.

 \therefore There exists scalars α , β , γ such that

$$(1, -3, 5) = \alpha(1, 2, 1) + \beta(1, 1, -1) + \gamma(4, 5, -2)$$

 $(1, -3, 5) = (\alpha + \beta + 4\gamma, 2\alpha + \beta + 5\gamma, \alpha - \beta - 2\gamma)$

Comparing both sides, we get

$$\alpha + \beta + 4\gamma = 1 \qquad \dots \dots \dots (1)$$
$$2\alpha + \beta + 5\gamma = -3 \qquad \dots \dots \dots (2)$$
$$\alpha - \beta - 2\gamma = 5 \dots \dots (3)$$

Adding (1) and (3), we get

$$2\alpha + 2\gamma = 6 \Rightarrow \alpha + \gamma = 3 \dots (4)$$

Adding (2) and (3), we get

$$3\alpha + 3\gamma = 2 \Rightarrow \alpha + \gamma = \frac{2}{3} \dots (5)$$

Equation (4) and (5) are contradiction

Hence (1, -3, 5) does not belong to linear space of S.

Remark :

OBSERVE OPTIMIZE OUTSPREAL

The union of the subspace may not be a sub-space.