## LAW OF MECHANICS

## Newton's First law:

It states that "A body continues in its states of rest or of uniform motion in a straight line, unless acted upon by some external force". This is known as First law of inertia.

## Newton's second Law of motion:

It states "The rate of change of momentum is directly propositional to the impressed force and tasks places in same direction in which the force acts".

$$
\mathrm{F}=\text { Mass } \mathrm{x} \text { Acceleration =ma }
$$

## Newton's third Law of motion:

It states "To every action there is always an equal and opposite reaction".

- A particle remains in its position (rest or motion) if the resultant force acting on the particle is zero.
- Acceleration of a particle will be proportional to the resultant force and in the same direction if the resultant force is not zero.
- Action and reaction $b / w$ interacting bodies are in the same line of action equal in magnitude but act in the opposite direction.


## FORCE

Force is an agent which changes or tends to change the states (or) uniform motion of a body upon which it acts. Force is a vector quantity.

## Characteristics of a Force:

1. Magnitude
2. Line of action
3. Direction

## Graphical Representation of force:



Newton's second law of motion
Momentum $=$ Mass $\times$ velocity
$\mathrm{M}=$ mass of the body
$\mathrm{u}=$ Initial velocity of body
$\mathrm{v}=$ final velocity of body
$\mathrm{a}=$ Constant acceleration
$t=$ time required to change velocity from $u$ to $v$
$\therefore$ change of momentum $\quad=m v-m u$
Rate of change of momentum $=\frac{m v-m u}{t}=\frac{(v-u)}{t}=m a$
By Newton's second Law
Force $=$ Rate of change of momentum

$$
F=m a
$$

## Unit of Force:

In SI system unit of force is (N) Newton. One Newton may be defined as the force while acting upon a mass of one kg . Produces an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ in the direction in which it acts.

$$
1 \mathrm{~N}=1 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{s}^{2}=1 \mathrm{kgm} / \mathrm{s}^{2}
$$



## Parallel

The forces do not line on same plane but their line of action is parallel to each other.

## Non concurrent.Non parallel

The forces neither lie on same plane not their line of action meet at common point.

## Like collinear coplanar forces

Forces acting in the same direction, lies on a common on line of action and acts in a single plane


## Unlike collinear coplanar forces:

Forces acting in the different lies on a common line of a action and act is a single plane.


## Coplanar concurrent forces:

Force intersects at a common point and lies in a single plane.


## Coplanar Non concurrent flow:

Forces which do not intersects at a common point but acts in one plane. They may be parallel or non parallel


Non coplanar concurrent forces

Forces intersect at a common point but either line of action do not lie on same plane.

## Non Coplanar Non concurrent foree:

Forces do not intersect at one point and also their lines of action do not lie on same plane.


## Coplanar forces:

The line of action of the forces lies on same plane.


## Non coplanar forces:

The lines of action of the forces not lie on same plane.


## Collinear:

The Line of action of the forces lie on same plane.

$$
\overrightarrow{\mathrm{F} 1} \overrightarrow{\mathrm{~F} 2} \overrightarrow{\mathrm{~F} 3} \stackrel{\mathrm{~F} 4}{ }
$$

## Like collinear:

The line of action of forces lies on a same line and in same direction.


## Unlike collinear

The lines of action of forces lie on same line but are in opposite direction.

$$
\xrightarrow{\mathrm{F} 1} \stackrel{\mathrm{~F} 2}{\longleftrightarrow} \stackrel{\mathrm{~F} 1}{\longleftrightarrow} \xrightarrow{\mathrm{~F} 2}
$$

## Concurrent forces:

The lines of action of all forces meet at a common point and lie in the same plane.


## Non concurrent force system:

The forces will lie on same plane but their line of action will not intersect at a common point. F1


## Parallel forces:

The forces lying on same plane whole line of action are parallel to each other.

## Like parallel:



If the force acts in the same direction they are coplanar like parallel force
system.

Unlike parallel:_If the force acts in opposite direction, they are coplanar unlike parallel force system.

