ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Methods to Test and Test Reports:-

Writing a test in TestNG basically involves the following steps —

o Write the business logic of your test and insert TestNG annotations in your code.

o Add the information about your test (e.g. the class name, the groups you wish to run,
etc.) in a testng.xml file or in build.xml.

e Run TestNG.

Here, one complete example of TestNG testing using POJO class, Business logic class and a

test xml, which will be run by TestNG.

Create EmployeeDetails.java in /work/testng/src, which is a POJO class.

public class EmployeeDetails {

private String name;
private double monthlySalary;

private int age;

/I @return the name

public String getName() {

return name;

}

/I @param name the name to set

public void setName(String name) {

this.name = name;

}

I/l @return the monthlySalary

public double getMonthlySalary() {

CCS366-SOFTWARE TESTING AND AUTOMATION

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

return monthlySalary;

}

/I @param monthlySalary the monthlySalary to set

public void setMonthlySalary(double monthlySalary) {
this.monthlySalary = monthlySalary;

}

/I @return the age

public int getAge() {
return age;

}

/I @param age the age to set

public void setAge(int age) {
this.age = age;
¥
}

EmployeeDetails class is used to —

o get/set the value of employee's name.
o get/set the value of employee's monthly salary.

o get/set the value of employee's age.
Create an EmpBusinessLogic.java in /work/testng/src, which contains business logic.

public class EmpBusinessLogic {

Il Calculate the yearly salary of employee
public double calculateYearlySalary(EmployeeDetails employeeDetails) {
double yearlySalary = 0;

CCS366-SOFTWARE TESTING AND AUTOMATION

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

yearlySalary = employeeDetails.getMonthlySalary() * 12;

return yearlySalary;

}

// Calculate the appraisal amount of employee

public double calculateAppraisal(EmployeeDetails employeeDetails) {

double appraisal = 0;

if(employeeDetails.getMonthlySalary() < 10000) {
appraisal = 500;

}else {
appraisal = 1000;

ks

return appraisal;

¥
k

EmpBusinessLogic class is used for calculating —

o the yearly salary of employee.

o the appraisal amount of employee.

Now, let's create a TestNG class called TestEmployeeDetails.java in /work/testng/src. A
TestNG class is a Java class that contains at least one TestNG annotation. This class contains
test cases to be tested. A TestNG test can be configured by @BeforeXXX and @After XXX

annotations (we will see this in the chapter TestNG - Execution Procedure), which allows to

perform some Java logic before and after a certain point.

import org.testng.Assert;
import org.testng.annotations.Test;

public class TestEmployeeDetails {
EmpBusinessLogic empBusinessLogic = new EmpBusinessLogic();
EmployeeDetails employee = new EmployeeDetails();

CCS366-SOFTWARE TESTING AND AUTOMATION

https://www.tutorialspoint.com/testng/testng_execution_procedure.htm

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

@Test
public void testCalculateAppriasal() {

employee.setName("Rajeev™);
employee.setAge(25);
employee.setMonthlySalary(8000);

double appraisal = empBusinessLogic.calculateAppraisal(employee);
Assert.assertEquals(500, appraisal, 0.0, "500");

}

Il Test to check yearly salary
@Test
public void testCalculateYearlySalary() {

employee.setName("Rajeev");
employee.setAge(25);
employee.setMonthlySalary(8000);

double salary = empBusinessLogic.calculateYearlySalary(employee);
Assert.assertEquals(96000, salary, 0.0, "8000");
}
}

TestEmployeeDetails class is used for testing the methods of EmpBusinessLogic class. It
does the following —

o Tests the yearly salary of the employee.
o Tests the appraisal amount of the employee.

Before you can run the tests, you must configure TestNG using a special XML file,

conventionally named testng.xml. The syntax for this file is very simple, and its contents are

as shown below. Create this file in /work/testng/src.

<?xml version = "1.0" encoding = "UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >

<suite name = "Suitel">
<test name = "test1">
<classes>
<class name = "TestEmployeeDetails"/>
</classes>
<[test>
</suite>

Details of the above file are as follows —

CCS366-SOFTWARE TESTING AND AUTOMATION

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

o Asuite is represented by one XML file. It can contain one or more tests and is defined
by the <suite> tag.

o Tag <test> represents one test and can contain one or more TestNG classes.

o <class> tag represents a TestNG class. It is a Java class that contains at least one

TestNG annotation. It can contain one or more test methods.

Compile the Test case classes using javac.

Iwork/testng/src$ javac EmployeeDetails.java EmpBusinessLogic.java
TestEmployeeDetails.java

Now TestNG with the following command —

Iwork/testng/src$ java org.testng.TestNG testng.xml

If all has been done correctly, you should see the results of your tests in the console.
Furthermore, TestNG creates a very nice HTML report in a folder called test-output that is
automatically created in the current directory. If you open it and load index.html, you will see

a page similar to the one in the image below —

- Ty esuits
All Suites =

Total running time: 6 ms
Number Method Class Time (ms)
0 testCalculateAppriasal TestEmployeeDetails 6
1 testCalculateYearlySalary TestEmployeeDetails 0
« testng.xml
e ltest
« 0 groups
« Reporter output
« Ignored methods
« Chronological view

« 2 methods, 2 passed

« Passed methods (hide)
testCalculateAppriasal
testCalculate YearlySalary

execution procedure of methods in TestNG. It explains the order of the methods called. Here
is the execution procedure of the TestNG test APl methods with an example.

Create a java class file name TestngAnnotation.java in in /work/testng/src to test
annotations.

import org.testng.annotations. Test;

import org.testng.annotations.BeforeMethod;
import org.testng.annotations.AfterMethod,;
import org.testng.annotations.BeforeClass;

CCS366-SOFTWARE TESTING AND AUTOMATION

ROHINI

import org.testng.annotations.AfterClass;
import org.testng.annotations.BeforeTest;
import org.testng.annotations.AfterTest;
import org.testng.annotations.BeforeSuite;
import org.testng.annotations.AfterSuite;

public class TestngAnnotation {
/] test case 1
@Test
public void testCasel() {
System.out.printIn("in test case 1");

}

/] test case 2

@Test

public void testCase2() {
System.out.printIn("in test case 2");

}

@BeforeMethod
public void beforeMethod() {
System.out.printin("in beforeMethod");

}

@ATfterMethod
public void afterMethod() {
System.out.printin("in afterMethod");

}

@BeforeClass
public void beforeClass() {
System.out.printin("in beforeClass");

}

@AfterClass
public void afterClass() {
System.out.printin("in afterClass");

}

@BeforeTest
public void beforeTest() {
System.out.printIn(in beforeTest™);

¥

@AfterTest
public void afterTest() {
System.out.printIn("in afterTest");

}

@BeforeSuite

COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

public void beforeSuite() {

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

System.out.printin("in beforeSuite™);

}

@ATfterSuite

public void afterSuite() {

System.out.printIin("in afterSuite™);

¥
¥

Next, let's create the file testng.xml in in /work/testng/src to execute annotations.

<?xml version = "1.0" encoding = "UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >

<suite name = "Suitel">
<test name = "test1">

<classes>

<class name = "TestngAnnotation"/>

</classes>
<[test>
</suite>

Compile the Test case class using javac.

Iwork/testng/src$ javac TestngAnnotation.java

Now, run the testng.xml, which will run the test case defined in the provided Test Case class.

Iwork/testng/src$ java org.testng. TestNG testng.xmi

Verify the output.

in beforeSuite
in beforeTest

in beforeClass
in beforeMethod
in test case 1

in afterMethod
in beforeMethod
in test case 2

in afterMethod
in afterClass

in afterTest

in afterSuite

CCS366-SOFTWARE TESTING AND AUTOMATION

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Suite

Based on the above output, the execution procedure is as follows —

o First of all, beforeSuite() method is executed only once.

o Lastly, the afterSuite() method executes only once.

e Even the methods beforeTest(), beforeClass(), afterClass(), and afterTest() methods
are executed only once.

« beforeMethod() method executes for each test case but before executing the test case.

« afterMethod() method executes for each test case but after executing the test case.

o In between beforeMethod() and afterMethod(), each test case executes.

TEST REPORTS:

TestNG, by default, generates multiple reports as part of its test execution. These
reports mainly include TestNG HTML report, TestNG email-able report, TestNG report XML,
and JUnit report XML files. These files can be found under the output report folder (in this

case, test-output).

TestNG - CUSTOM REPORTER

1. Create Test Case Class. Create a java class, say, SampleTest. java in /work/testng/src.
import org.
2. Create Custom Reporting Class. Create another new class named CustomReporter. java

in /work/testng/src. import java.

3. Create testng. xml. Create testng.

CCS366-SOFTWARE TESTING AND AUTOMATION

