
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

 Methods to Test and Test Reports:-

Writing a test in TestNG basically involves the following steps −

• Write the business logic of your test and insert TestNG annotations in your code.

• Add the information about your test (e.g. the class name, the groups you wish to run,

etc.) in a testng.xml file or in build.xml.

• Run TestNG.

Here, one complete example of TestNG testing using POJO class, Business logic class and a

test xml, which will be run by TestNG.

Create EmployeeDetails.java in /work/testng/src, which is a POJO class.

public class EmployeeDetails {

 private String name;

 private double monthlySalary;

 private int age;

 // @return the name

 public String getName() {

 return name;

 }

 // @param name the name to set

 public void setName(String name) {

 this.name = name;

 }

 // @return the monthlySalary

 public double getMonthlySalary() {

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

 return monthlySalary;

 }

 // @param monthlySalary the monthlySalary to set

 public void setMonthlySalary(double monthlySalary) {

 this.monthlySalary = monthlySalary;

 }

 // @return the age

 public int getAge() {

 return age;

 }

 // @param age the age to set

 public void setAge(int age) {

 this.age = age;

 }

}

EmployeeDetails class is used to −

• get/set the value of employee's name.

• get/set the value of employee's monthly salary.

• get/set the value of employee's age.

Create an EmpBusinessLogic.java in /work/testng/src, which contains business logic.

public class EmpBusinessLogic {

 // Calculate the yearly salary of employee

 public double calculateYearlySalary(EmployeeDetails employeeDetails) {

 double yearlySalary = 0;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

 yearlySalary = employeeDetails.getMonthlySalary() * 12;

 return yearlySalary;

 }

 // Calculate the appraisal amount of employee

 public double calculateAppraisal(EmployeeDetails employeeDetails) {

 double appraisal = 0;

 if(employeeDetails.getMonthlySalary() < 10000) {

 appraisal = 500;

 } else {

 appraisal = 1000;

 }

 return appraisal;

 }

}

EmpBusinessLogic class is used for calculating −

• the yearly salary of employee.

• the appraisal amount of employee.

Now, let's create a TestNG class called TestEmployeeDetails.java in /work/testng/src. A

TestNG class is a Java class that contains at least one TestNG annotation. This class contains

test cases to be tested. A TestNG test can be configured by @BeforeXXX and @AfterXXX

annotations (we will see this in the chapter TestNG - Execution Procedure), which allows to

perform some Java logic before and after a certain point.

import org.testng.Assert;

import org.testng.annotations.Test;

public class TestEmployeeDetails {

 EmpBusinessLogic empBusinessLogic = new EmpBusinessLogic();

 EmployeeDetails employee = new EmployeeDetails();

https://www.tutorialspoint.com/testng/testng_execution_procedure.htm

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

 @Test

 public void testCalculateAppriasal() {

 employee.setName("Rajeev");

 employee.setAge(25);

 employee.setMonthlySalary(8000);

 double appraisal = empBusinessLogic.calculateAppraisal(employee);

 Assert.assertEquals(500, appraisal, 0.0, "500");

 }

 // Test to check yearly salary

 @Test

 public void testCalculateYearlySalary() {

 employee.setName("Rajeev");

 employee.setAge(25);

 employee.setMonthlySalary(8000);

 double salary = empBusinessLogic.calculateYearlySalary(employee);

 Assert.assertEquals(96000, salary, 0.0, "8000");

 }

}

TestEmployeeDetails class is used for testing the methods of EmpBusinessLogic class. It

does the following −

• Tests the yearly salary of the employee.

• Tests the appraisal amount of the employee.

Before you can run the tests, you must configure TestNG using a special XML file,

conventionally named testng.xml. The syntax for this file is very simple, and its contents are

as shown below. Create this file in /work/testng/src.

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >

<suite name = "Suite1">

 <test name = "test1">

 <classes>

 <class name = "TestEmployeeDetails"/>

 </classes>

 </test>

</suite>

Details of the above file are as follows −

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

• A suite is represented by one XML file. It can contain one or more tests and is defined

by the <suite> tag.

• Tag <test> represents one test and can contain one or more TestNG classes.

• <class> tag represents a TestNG class. It is a Java class that contains at least one

TestNG annotation. It can contain one or more test methods.

Compile the Test case classes using javac.

/work/testng/src$ javac EmployeeDetails.java EmpBusinessLogic.java

TestEmployeeDetails.java

Now TestNG with the following command −

/work/testng/src$ java org.testng.TestNG testng.xml

If all has been done correctly, you should see the results of your tests in the console.

Furthermore, TestNG creates a very nice HTML report in a folder called test-output that is

automatically created in the current directory. If you open it and load index.html, you will see

a page similar to the one in the image below −

execution procedure of methods in TestNG. It explains the order of the methods called. Here

is the execution procedure of the TestNG test API methods with an example.

Create a java class file name TestngAnnotation.java in in /work/testng/src to test

annotations.

import org.testng.annotations.Test;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.AfterMethod;

import org.testng.annotations.BeforeClass;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

import org.testng.annotations.AfterClass;

import org.testng.annotations.BeforeTest;

import org.testng.annotations.AfterTest;

import org.testng.annotations.BeforeSuite;

import org.testng.annotations.AfterSuite;

public class TestngAnnotation {

 // test case 1

 @Test

 public void testCase1() {

 System.out.println("in test case 1");

 }

 // test case 2

 @Test

 public void testCase2() {

 System.out.println("in test case 2");

 }

 @BeforeMethod

 public void beforeMethod() {

 System.out.println("in beforeMethod");

 }

 @AfterMethod

 public void afterMethod() {

 System.out.println("in afterMethod");

 }

 @BeforeClass

 public void beforeClass() {

 System.out.println("in beforeClass");

 }

 @AfterClass

 public void afterClass() {

 System.out.println("in afterClass");

 }

 @BeforeTest

 public void beforeTest() {

 System.out.println("in beforeTest");

 }

 @AfterTest

 public void afterTest() {

 System.out.println("in afterTest");

 }

 @BeforeSuite

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

 public void beforeSuite() {

 System.out.println("in beforeSuite");

 }

 @AfterSuite

 public void afterSuite() {

 System.out.println("in afterSuite");

 }

}

Next, let's create the file testng.xml in in /work/testng/src to execute annotations.

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >

<suite name = "Suite1">

 <test name = "test1">

 <classes>

 <class name = "TestngAnnotation"/>

 </classes>

 </test>

</suite>

Compile the Test case class using javac.

/work/testng/src$ javac TestngAnnotation.java

Now, run the testng.xml, which will run the test case defined in the provided Test Case class.

/work/testng/src$ java org.testng.TestNG testng.xml

Verify the output.

in beforeSuite

in beforeTest

in beforeClass

in beforeMethod

in test case 1

in afterMethod

in beforeMethod

in test case 2

in afterMethod

in afterClass

in afterTest

in afterSuite

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

===

Suite

Total tests run: 2, Failures: 0, Skips: 0

===

Based on the above output, the execution procedure is as follows −

• First of all, beforeSuite() method is executed only once.

• Lastly, the afterSuite() method executes only once.

• Even the methods beforeTest(), beforeClass(), afterClass(), and afterTest() methods

are executed only once.

• beforeMethod() method executes for each test case but before executing the test case.

• afterMethod() method executes for each test case but after executing the test case.

• In between beforeMethod() and afterMethod(), each test case executes.

TEST REPORTS:

TestNG, by default, generates multiple reports as part of its test execution. These

reports mainly include TestNG HTML report, TestNG email-able report, TestNG report XML,

and JUnit report XML files. These files can be found under the output report folder (in this

case, test-output).

TestNG - CUSTOM REPORTER

1. Create Test Case Class. Create a java class, say, SampleTest. java in /work/testng/src.

import org.

2. Create Custom Reporting Class. Create another new class named CustomReporter. java

in /work/testng/src. import java.

3. Create testng. xml. Create testng.

