
AD3351 | DESIGN AND ANLAYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II

BRUTE FORCE AND DIVIDE-AND-CONQUER

Brute Force – Computing an – String Matching – Closest-Pair and Convex-Hull Problems –

Exhaustive Search – Travelling Salesman Problem – Knapsack Problem – Assignment problem.

Divide and Conquer Methodology – Binary Search – Merge sort – Quick sort – Heap Sort –

Multiplication of Large Integers – Closest-Pair and Convex – Hull Problems.

1. BRUTE FORCE

Brute force is a straightforward approach to solving a problem, usually directly based on the

problem statement and definitions of the concepts involved.

Selection Sort, Bubble Sort, Sequential Search, String Matching, Depth- First Search

and Breadth-First Search, Closest-Pair and Convex-Hull Problems can be solved by Brute

Force.

COMPUTING an:

1. Computing an : a * a * a * … * a (n times)

2. Computing n! : The n! can be computed as n*(n-1)* …*3*2*1

3. Multiplication of two matrices: C=A

4. Searching a key from list of elements (Sequential search)

Advantages:

1. Brute force is applicable to a very wide variety of problems.

2. It is very useful for solving small size instances of a problem, even though it

is inefficient.

3. The brute-force approach yields reasonable algorithms of at least some

practical value with no limitation on instance size for sorting, searching, and

string matching.

Selection Sort

 First scan the entire given list to find its smallest element and exchange it with the

first element, putting the smallest element in its final position in the sorted list.

 Then scan the list, starting with the second element, to find the smallest among the

last n − 1 elements and exchange it with the second element, putting the second

AD3351 | DESIGN AND ANLAYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

smallest element in its final position in the sorted list.

 Generally, on the I th pass through the list, which we number from 0

to n − 2, the algorithm searches for the smallest item among thelast n−i elements and swaps

it with Ai:A0≤A1≤...≤Ai–1|Ai,...,Amin,...,An–1 in their final positions | the last n – I

elements

After n − 1 passes, the list is sorted

AD3351 | DESIGN AND ANLAYSIS OF ALGORITHMS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

arrays, it is the same as the number of key comparisons.

worst(n) ∈ Θ (n2)

