
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

Aggregations: Min, Max, and Everything in Between

Minimum and Maximum

Python has built-in min and max functions, used to find the minimum value and maximum value of

any given array.

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use methods of the

array object itself.

➢ np.min() – finds the minimum (smallest) value in the array

➢ np.max() – finds the maximum (largest) value in the array

Example

x=[1,2,3,4]

np.min(x)

1

np.max(x)

4

Multidimensional aggregates

One common type of aggregation operation is an aggregate along a row or column. By default, each

NumPy aggregation function will return the aggregate over the entire array. ie. If we use the np.sum() it will

calculates the sum of all elements of the array.

Example

Aggregation functions take an additional argument specifying the axis along which the aggregate is

computed. The axis normally takes either 0 or 1. if the axis = 0 then it runs along with columns, if axis =1 it

runs along with rows.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

Other aggregation functions

NumPy provides many other aggregations functions most aggregates have a NaN-safe counterpart

that computes the result while ignoring missing values, which are marked by the special IEEE floating-point

NaN value.

Function Name NaN-safe Version Description

np.sum np.nansum Compute sum of elements

np.prod np.nanprod Compute product of elements

np.mean np.nanmean Compute median of elements

np.std np.nanstd Compute standard deviation

np.var np.nanvar Compute variance

np.min np.nanmin Find minimum value

np.max np.nanmax Find maximum value

np.argmin np.nanargmin Find index of minimum value

np.argmax np.nanargmax Find index of maximum value

np.median np.nanmedian Compute median of elements

np.percentile np.nanpercentile Compute rank-based statistics of elements

np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true

Computation on Arrays: Broadcasting

Broadcasting is simply a set of rules for applying binary ufuncs (addition, subtraction, multiplication,

etc.) on arrays of different sizes.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

We can think of this as an operation that stretches or duplicates the value 5 into the array [5, 5, 5],

and adds the results. The advantage of NumPy’s broadcasting is that this duplication of values does not

actually take place. We can similarly extend this to arrays of higher dimension. Observe the result when we

add a one-dimensional array to a two-dimensional array.

Here the one-dimensional array a is stretched, or broadcast, across the second dimension in order to

match the shape of M. Just as before we stretched or broadcasted one value to match the shape of the other,

here we’ve stretched both a and b to match a common shape, and the result is a two dimensional array.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

Rules of Broadcasting

Broadcasting in NumPy follows a strict set of rules to determine the interaction between the two arrays.

➢ Rule 1: If the two arrays differ in their number of dimensions, the shape of the one with fewer

dimensions is padded with ones on its leading (left) side.

➢ Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to

1 in that dimension is stretched to match the other shape.

➢ Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

