
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 EXPRESSION TREES

 The expression tree is a tree used to represent the various expressions. The tree

data structure is used to represent the expressional statements. In this tree, the

internal node always denotes the operators. The leaf nodes always denote the

operands.

 For example, expression tree for 3 + ((5+9)*2) would be:

 Properties of an Expression tree

 In this tree, the internal node always denotes the operators.

 The leaf nodes always denote the operands.

 The operations are always performed on these operands.

 The operator present in the depth of the tree is always at the highest priority.

 The operator, which is not much at the depth in the tree, is always at the lowest

priority compared to the operators lying at the depth.

 The operand will always present at a depth of the tree; hence it is considered the

highest priority among all the operators.

 Construction of Expression Tree

 Let us consider a postfix expression is given as an input for constructing an

expression tree. Following are the step to construct an expression tree:

 Read one symbol at a time from the postfix expression.

 Check if the symbol is an operand or operator.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 If the symbol is an operand, create a one node tree and push a pointer onto a

stack

 If the symbol is an operator, pop two pointers from the stack namely T1 & T2

and form a new tree with root as the operator, T1 & T2 as a left and right child

 A pointer to this new tree is pushed onto the stack

 Thus, an expression is created or constructed by reading the symbols or numbers

from the left. If operand, create a node. If operator, create a tree with operator as

root and two pointers to left and right subtree

 Example - Postfix Expression Construction

 The input is: a b + c *

o The first two symbols are operands, we create one-node tree and push a

pointer to them onto the stack.

o Next, read a'+' symbol, so two pointers to tree are popped, a new tree is

formed and push a pointer to it onto the stack.

o Next, 'c' is read, we create one node tree and push a pointer to it onto the stack.

o Finally, the last symbol is read ' * ', we pop two tree pointers and form a

new tree with a, ' * ' as root, and a pointer to the final tree remains on

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

the stack.

 Implementation of Expression tree in C Programming language

// C program for expression tree implementation

#include <stdio.h>

#include <stdlib.h>

/* The below structure node is defined as a node of a binary tree consists

of left child and the right child, along with the pointer next which points to the

next node */

struct node

{

char info ;

struct node* l ;

struct node* r ;

struct node* nxt ;

};

struct node *head=NULL;

/* Helper function that allocates a new node with

the given data and NULL left and right pointers. */

struct node* newnode(char data)

{

struct node* node = (struct node*) malloc (sizeof (struct node))

; node->info = data ;

node->l = NULL ;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

node->r = NULL ;

node->nxt = NULL

; return (node) ;

}

void Inorder(struct node* node)

{

if (node == NULL)

return ;

else

{

/* first recur on left child */

Inorder (node->l) ;

/* then print the data of node */

printf ("%c " , node->info) ;

/* now recur on right child */

Inorder (node->r) ;

}

}

void push (struct node* x)

{

if (head == NULL)

head = x ;

else

{

(x)->nxt = head ;

head = x ;

}

// struct node* temp ;

// while (temp != NULL)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

// {

// printf (" %c " , temp->info) ;

// temp = temp->nxt ;

// }

}

struct node* pop()

{

// Poping out the top most [pointed with head] element

struct node* n = head ;

head = head->nxt ;

return n ;

}

int main()

{

char t[] = { 'X' , 'Y' , 'Z' , '*' , '+' , 'W' , '/' } ;

int n = sizeof(t) / sizeof(t[0]) ;

int i ;

struct node *p , *q , *s ;

for (i = 0 ; i < n ; i++)

{

// if read character is operator then popping two

// other elements from stack and making a binary

// tree

if (t[i] == '+' || t[i] == '-' || t[i] == '*' || t[i] == '/' || t[i] == '^')

{

s = newnode (t [i]) ;

p = pop() ;

q = pop()

; s->l = q ;

s->r = p;

push(s);

}

else {

s = newnode (t [i]) ;

push (s) ;

}

}

printf (" The Inorder Traversal of Expression Tree: ") ;

Inorder (s) ;

return 0 ;

}

The output of the above program is

X + Y * Z / W

 Use of Expression tree

 The main objective of using the expression trees is to make complex expressions

and can easily be evaluated using these expression trees.

 It is also used to find out the associativity of each operator in the expression.

 It is also used to solve the postfix, prefix, and infix expression evaluation.

	EXPRESSION TREES
	Properties of an Expression tree
	Construction of Expression Tree
	Example - Postfix Expression Construction
	 The input is: a b + c *

	Implementation of Expression tree in C Programming language
	// C program for expression tree implementation
	The output of the above program is

	Use of Expression tree

