1.4 REDUCTION OF QUADRATIC FORM TO CANON ICAL FORM BY ORTHOGONAL TRANSFORMATION

Quadratic Form

A homogeneous polynomial of second degree in any number of variables is called a quadratic form.

The general Quadratic form in three variables $\left\{x_{1}, x_{2}, x_{3}\right\}$ is
given by

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & =a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+ \\
& a_{21} x_{1} x_{2}+a_{22} x_{2}^{2}+a_{23} x_{2} x_{3}+a_{31} x_{3} x_{1}+a_{32} x_{2} x_{2}+a_{33} x_{3}^{2}
\end{aligned}
$$

This Quadratic form can written as

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} a_{i j} x_{i} y_{j}
$$

$$
\begin{gathered}
f\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
=X^{\prime} A X
\end{gathered}
$$

Where $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ and A is called the matrix of the Quadratic form.
Note: To write the matrix of a quadratic form as

$$
A=\left(\begin{array}{ccc}
\text { coeff. ofx }^{2} & 1 / 2 \text { coeff. ofxy } & 1 / 2 \text { coeff. ofxz } \\
1 / 2 \text { coeff. ofxy } & \text { coeff. ofy }^{2} & 1 / 2 \text { coeff. ofyz } \\
1 / 2 \text { coeff. of xz } & 1 / 2 \text { coeff. ofyz } & \text { coeff. of } z^{2}
\end{array}\right)
$$

Example: Write down the Quadratic form in to matrix form
(i) $2 \mathrm{x}^{2}+3 \mathrm{y}^{2}+6 \mathrm{xy}$

Solution:

$$
\begin{aligned}
A= & \left(\begin{array}{cc}
\text { coeff. of } x^{2} & 1 / 2 \text { coeff. of } x y \\
1 / 2 \text { coeff. of xy } \\
\text { coeff. ofy }^{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 & 3 \\
3 & 3
\end{array}\right)
\end{aligned}
$$

(ii) $2 x^{2}+5 y^{2}-6 z^{2}-2 x y-y z+8 z x$

Solution:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
\text { coeff. ofx }^{2} & 1 / 2 \text { coeff. ofxy } & 1 / 2 \text { coeff. ofxz } \\
1 / 2 \text { coeff. ofxy } & \begin{array}{c}
\text { coeff. ofy }
\end{array} \\
1 / 2 \text { coeff. of xz } & 1 / 2 \text { coeff. ofyz }^{1 / 2} \begin{array}{c}
\text { coeff. ofyz }^{2} \\
\text { coeff. of }^{2}
\end{array}
\end{array}\right) \\
=\left(\begin{array}{ccc}
2 & -1 & 4 \\
-1 & 5 & -1 / 2 \\
4 & -1 / 2 & -6
\end{array}\right)
\end{gathered}
$$

Example: Write down the matrix form in to Quadratic form
(i) $\left(\begin{array}{ccc}2 & 1 & -3 \\ 1 & -2 & 3 \\ -3 & -2 & 5\end{array}\right)$

Solution:

Quadratic form is $2 \mathrm{x}_{1}^{2}-2 \mathrm{x}_{2}^{2}+6 \mathrm{x}_{3}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}-6 \mathrm{x}_{1} \mathrm{x}_{3}+6 \mathrm{x}_{2} \mathrm{x}_{3}$
(ii) $\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & 6\end{array}\right)$

Solution:
Quadratic form is $x_{1}^{2}+3 x_{2}^{2}+6 x_{3}^{2}+2 x_{1} x_{2}+4 x_{1} x_{3}+2 x_{2} x_{3}$.

Example: Reduce the Quadratic formx $\mathbf{1}_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}+6 x_{2} x_{3}$ to canonical form through an orthogonal transformation .Find the nature rank, index, signature and also find the non zero set of values which makes this Quadratic form as zero.

Solution:

$$
\text { Given } A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

The characteristic equation is $\lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}=0$

$$
\begin{aligned}
& \mathrm{s}_{1}=\text { sum of the main diagonal element } \\
& \quad=1+2+1=4
\end{aligned}
$$

$s_{2}=$ sum of the minors of the main diagonalelement

$$
\begin{aligned}
& =\left|\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right|+\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|+\left|\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right|=1+1+1=3 \\
s_{3} & =|\mathrm{A}|
\end{aligned}=\left|\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right|=0,
$$

Characteristic equation is $\lambda^{3}-4 \lambda^{2}+3 \lambda=0$

$$
\begin{gathered}
\Rightarrow \lambda=0 ;\left(\lambda^{2}-4 \lambda+3\right)=0 \\
\Rightarrow \lambda=0,1,3
\end{gathered}
$$

To find the Eigen vectors:

Case (i) When $\lambda=0$ the eigen vector is given by $(\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0$ where $\mathrm{X}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\begin{align*}
& \Rightarrow\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots(1) \\
& -\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=0 . \\
& 0 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=0 \ldots \tag{3}
\end{align*}
$$

From (1) and (2)

$$
\begin{aligned}
& \frac{x_{1}}{-1}=\frac{x_{2}}{-1}=\frac{x_{3}}{2-1} \\
& \frac{x_{1}}{-1}=\frac{x_{2}}{-1}=\frac{x_{3}}{1} \\
& x_{1}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Case (ii) When $\lambda=3$ the eigen vector is given by $(A-\lambda I) X=0$ where $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\begin{array}{r}
\Rightarrow\left(\begin{array}{ccc}
1-3 & -1 & 0 \\
-1 & 2-3 & 1 \\
0 & 1 & 1-3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
-2 \mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots(4) \\
-\mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3}=0 \ldots \tag{5}
\end{array}
$$

$$
\begin{equation*}
0 x_{1}+x_{2}-2 x_{3}=0 \tag{6}
\end{equation*}
$$

From (4) and (5)

$$
\begin{aligned}
& \quad \frac{x_{1}}{-1}=\frac{x_{2}}{2}=\frac{x_{3}}{2-1} \\
& \frac{x_{1}}{-1}=\frac{x_{2}}{2}=\frac{x_{3}}{1} \\
& X_{2}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)
\end{aligned}
$$

Case (iii) When $\lambda=1$ the eigen vector is given by $(\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0$ where $\mathrm{X}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\begin{gather*}
\Rightarrow\left(\begin{array}{ccc}
1-1 & -1 & 0 \\
-1 & 2-1 & 1 \\
0 & 1 & 1-1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
0 \mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots(7) \\
-\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=0 \ldots \text { (8) } \tag{8}\\
0 \mathrm{x}_{1}+\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots \tag{9}
\end{gather*}
$$

From (7) and (8)

$$
\begin{gathered}
\frac{x_{1}}{-1-0}=\frac{x_{2}}{0-0}=\frac{x_{3}}{0-1} \\
\frac{x_{1}}{-1}=\frac{x_{2}}{0}=\frac{x_{3}}{-1} \\
\frac{x_{1}}{1}=\frac{x_{2}}{0}=\frac{x_{3}}{1} \\
X_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

Hence the corresponding Eigen vectors are $\mathrm{X}_{1}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right) ; \mathrm{X}_{2}=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right) ; \quad \mathrm{X}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
To check $X_{1}, X_{2} \& X_{3}$ are orthogonal

$$
\mathrm{X}_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)=-1+2-1=0
$$

$$
\begin{gathered}
\mathrm{X}_{2}^{\mathrm{T}} \mathrm{X}_{3}=\left(\begin{array}{lll}
-1 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=-1+0+1=0 \\
\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)=1+0-1=0
\end{gathered}
$$

Normalized Eigen vectors are

$$
\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{-1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{c}
\frac{-1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)
$$

Normalized modal matrix

$$
\begin{aligned}
\mathrm{N} & =\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
\mathrm{N}^{\mathrm{T}} & =\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\
\frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right)
\end{aligned}
$$

Thus the diagonal matrix $D=N^{T}$ AN

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\
\frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right) \\
\mathrm{D} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

Canonical form $=Y^{T}$ DY where $\mathrm{Y}=\left(\begin{array}{l}\mathrm{y}_{1} \\ \mathrm{y}_{2} \\ \mathrm{y}_{3}\end{array}\right)$
$Y^{T} D Y=\left(y_{1}, y_{2}, y_{3}\right)\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)\left(\begin{array}{l}y_{1} \\ \mathrm{y}_{2} \\ \mathrm{y}_{3}\end{array}\right)$

$$
=0 y_{1}{ }^{2}+y_{2}^{2}+3 y_{3}{ }^{2}
$$

Rank $=2$
Index $=2$
Signature $=2-0=2$
Nature is positive semi definite.

To find non zero set of values:

Consider the transformation $\mathrm{X}=\mathrm{NY}$

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \\
& x_{1}=\frac{y_{1}}{\sqrt{3}}-\frac{y_{2}}{\sqrt{6}}+\frac{y_{3}}{\sqrt{2}} \\
& x_{2}=\frac{y_{1}}{\sqrt{3}}+\frac{2 y_{2}}{\sqrt{6}}+0 y_{3} \\
& x_{3}=\frac{-y_{1}}{\sqrt{3}}+\frac{y_{2}}{\sqrt{6}}+\frac{y_{3}}{\sqrt{2}}
\end{aligned}
$$

Put $y_{2}=0 \& y_{3}=0$

$$
\mathrm{x}_{1}=\frac{\mathrm{y}_{1}}{\sqrt{3}} ; \mathrm{x}_{2}=\frac{\mathrm{y}_{1}}{\sqrt{3}} ; \mathrm{x}_{3}=\frac{-\mathrm{y}_{1}}{\sqrt{3}}
$$

Put $\mathrm{y}_{1}=\sqrt{3}$
$\mathrm{x}_{1}=1 ; \mathrm{x}_{2}=1 ; \mathrm{x}_{3}=-1$ which makes the Quadratic equation zero.
Example: Reduce the Quadratic form $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}$ to canonical form through an orthogonal transformation. .Find the nature rank,index,signature and also find the non zero set of values which makes this Quadratic form as zero
Solution:

$$
A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The characteristic equation is $\lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}=0$

$$
\mathrm{s}_{1}=\text { sum of the main diagonal element }
$$

$$
\begin{aligned}
& =1+1+1=3 \\
s_{2}= & \text { sum of the minors of the main diagonalelement } \\
& =\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|+\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|+\left|\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right|=1+1+0=2 \\
\mathrm{~s}_{3} & =|\mathrm{A}|=\left|\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=0
\end{aligned}
$$

Characteristic equation is $\lambda^{3}-3 \lambda^{2}+2 \lambda=0$

$$
\begin{gathered}
\Rightarrow \lambda=0 ;\left(\lambda^{2}-3 \lambda+2\right)=0 \\
\Rightarrow \lambda=0,1,2
\end{gathered}
$$

To find the Eigen vectors:

Case (i) When $\lambda=0$ the eigen vector is given by $(\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0$ where $\mathrm{X}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\begin{align*}
& \Rightarrow\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots \text { (1) } \\
& \quad-\mathrm{x}_{1}+\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots \text { (2) } \tag{2}\\
& 0 \mathrm{x}_{1}+0 \mathrm{x}_{2}+\mathrm{x}_{3}=0 \ldots \text { (3) } \tag{3}
\end{align*}
$$

From (1) and (2)

$$
\begin{aligned}
& \quad \frac{x_{1}}{1-0}=\frac{x_{2}}{0+1}=\frac{x_{3}}{0} \\
& \frac{x_{1}}{1}=\frac{x_{2}}{1}=\frac{x_{3}}{0} \\
& X_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Case (ii) When $\lambda=1$ the eigen vector is given by $(A-\lambda I) X=0$ where $\mathrm{X}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\Rightarrow\left(\begin{array}{ccc}
1-1 & -1 & 0 \\
-1 & 1-1 & 0 \\
0 & 0 & 1-0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{align*}
& 0 \mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots(4) \tag{4}\\
&-\mathrm{x}_{1}+0 \mathrm{x}_{2}+0 \mathrm{x}_{3}=0 . \tag{5}\\
& 0 \mathrm{x}_{1}+0 \mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots \tag{6}
\end{align*}
$$

From (4) and (5)

$$
\begin{aligned}
& \quad \frac{x_{1}}{0}=\frac{x_{2}}{0}=\frac{x_{3}}{-1} \\
& X_{2}=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

Case (iii) When $\lambda=2$ the eigen vector is given by $(A-\lambda I) X=0$ where $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\begin{gather*}
\Rightarrow\left(\begin{array}{ccc}
1-2 & -1 & 0 \\
-1 & 1-2 & 0 \\
0 & 0 & 1-2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
-\mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots(7) \\
-\mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \ldots \text { (8) } \tag{8}\\
0 \mathrm{x}_{1}+0 \mathrm{x}_{2}-\mathrm{x}_{3}=0 \ldots \tag{9}
\end{gather*}
$$

From (7) and (8)

$$
\begin{aligned}
& \quad \frac{x_{1}}{1-0}=\frac{x_{2}}{0-1}=\frac{x_{3}}{0-0} \\
& \frac{x_{1}}{1}=\frac{x_{2}}{-1}=\frac{x_{3}}{0} \\
& X_{3}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

Hence the corresponding Eigen vectors are $X_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) ; X_{2}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right) ; \quad X_{3}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$
To check $\mathrm{X}_{1}, \mathrm{X}_{2} \& \mathrm{X}_{3}$ are orthogonal

$$
X_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)=0+0+0=0
$$

$$
\begin{gathered}
\mathrm{X}_{2}{ }^{\mathrm{T}} \mathrm{X}_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=0+0+0=0 \\
\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=1-1+0=0
\end{gathered}
$$

Normalized Eigen vectors are

$$
\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} \\
0
\end{array}\right)
$$

Normalized modal matrix

$$
\begin{aligned}
\mathrm{N} & =\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
0 & -1 & 0
\end{array}\right) \\
\mathrm{N}^{\mathrm{T}} & =\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & -1 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0
\end{array}\right)
\end{aligned}
$$

Thus the diagonal matrix $D=N^{T} A N$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & -1 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
0 & -1 & 0
\end{array}\right) \\
\mathrm{D} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Canonical form $=Y^{T} D Y$ where $Y=\left(\begin{array}{l}\mathrm{y}_{1} \\ \mathrm{y}_{2} \\ \mathrm{y}_{3}\end{array}\right)$

$$
\begin{aligned}
Y^{T} D Y= & \left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\mathrm{y}_{3}
\end{array}\right) \\
& =0{y_{1}}^{2}+{y_{2}}^{2}+2{y_{3}}^{2}
\end{aligned}
$$

Rank $=2$

Index $=2$
Signature $=2-0=2$
Nature is positive semi definite.

To find non zero set of values:

Consider the transformation $\mathrm{X}=\mathrm{NY}$

$$
\begin{aligned}
& \left(\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\mathrm{y}_{3}
\end{array}\right) \\
& \mathrm{x}_{1}=\frac{\mathrm{y}_{1}}{\sqrt{2}}+0+\frac{\mathrm{y}_{3}}{\sqrt{2}} \\
& \mathrm{x}_{2}=\frac{\mathrm{y}_{1}}{\sqrt{2}}+0-\frac{\mathrm{y}_{3}}{\sqrt{2}} \\
& \mathrm{x}_{3}=0-\mathrm{y}_{2}-0
\end{aligned}
$$

Put $y_{2}=0 \& y_{3}=0$

$$
\mathrm{x}_{1}=\frac{\mathrm{y}_{1}}{\sqrt{2}} ; \mathrm{x}_{2}=\frac{\mathrm{y}_{1}}{\sqrt{2}} ; \mathrm{x}_{3}=0
$$

Put $\mathrm{y}_{1}=\sqrt{2}$
$\mathrm{x}_{1}=1 ; \mathrm{x}_{2}=1 ; \mathrm{x}_{3}=0$ which makes the Quadratic equation zero.
Example: Reduce the Quadratic form $2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}-4 x_{2} x_{3}$ to canonical form through an orthogonal transformation .

Solution:

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -2 \\
-1 & -2 & 1
\end{array}\right)
$$

The characteristic equation is $\lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}=0$

$$
\begin{aligned}
& s_{1}=\text { sum of the main diagonal element } \\
& =2+1+1=4
\end{aligned}
$$

$\mathrm{s}_{2}=$ sum of the minors of the main diagonalelement

$$
=\left|\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right|+\left|\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right|+\left|\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right|
$$

$$
\begin{array}{r}
=-3+1+1=-1 \\
s_{3}=|A|=\left|\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -2 \\
-1 & -2 & 1
\end{array}\right|=-4
\end{array}
$$

Characteristic equation is $\lambda^{3}-4 \lambda^{2}-\lambda+4=0$

$$
\lambda=-1,1,4
$$

To find the Eigen vectors:

Case (i) When $\lambda=-1$ the Eigen vector is given by $(A-\lambda I) X=0$

$$
\begin{gather*}
\text { where } \mathrm{X}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
\Rightarrow\left(\begin{array}{ccc}
2+1 & 1 & -1 \\
1 & 1+1 & -2 \\
-1 & -2 & 1+1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
3 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0 \ldots \text { (1) } \\
\mathrm{x}_{1}+2 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0 \ldots(2) \\
\quad-\mathrm{x}_{1}-2 \mathrm{x}_{2}+2 \mathrm{x}_{3}=0 \ldots \tag{3}
\end{gather*}
$$

From (1) and (2)

$$
\begin{aligned}
& \frac{x_{1}}{-2+2}=\frac{x_{2}}{-1+6}=\frac{x_{3}}{6-1} \\
& \quad \frac{x_{1}}{0}=\frac{x_{2}}{5}=\frac{x_{3}}{5} \\
& X_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

Case (ii) When $\lambda=1$ the Eigen vector is given by $(A-\lambda I) X=0$ where $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\begin{array}{r}
\Rightarrow\left(\begin{array}{ccc}
2-1 & 1 & -1 \\
1 & 1-1 & -2 \\
-1 & -2 & 1-1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0 \ldots(4) \\
\mathrm{x}_{1}+0 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0 \ldots \tag{5}
\end{array}
$$

$$
\begin{equation*}
-\mathrm{x}_{1}-2 \mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \tag{6}
\end{equation*}
$$

From (4) and (5)

$$
\begin{aligned}
& \frac{x_{1}}{-2+0}=\frac{x_{2}}{-1+2}=\frac{x_{3}}{0-1} \\
& \frac{x_{1}}{-2}=\frac{x_{2}}{1}=\frac{x_{3}}{-1} \\
& X_{2}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Case (iii) When $\lambda=4$ the eigen vector is given by $(A-\lambda I) X=0$ where $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{ccc}
2-4 & 1 & -1 \\
1 & 1-4 & -2 \\
-1 & -2 & 1-4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& -2 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0 \ldots(7) \\
& \mathrm{x}_{1}-3 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0 \ldots \text { (8) } \\
& -\mathrm{x}_{1}-2 \mathrm{x}_{2}-3 \mathrm{x}_{3}=0 \ldots(9)
\end{aligned}
$$

From (7) and (8)

$$
\begin{aligned}
& \frac{x_{1}}{-2-3}=\frac{x_{2}}{-1-4}=\frac{x_{3}}{6-1} \\
& \frac{x_{1}}{-5}=\frac{x_{2}}{-5}=\frac{x_{3}}{5} \\
& \frac{x_{1}}{1}=\frac{x_{2}}{1}=\frac{x_{3}}{-1} \\
& x_{3}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

Hence the corresponding Eigen vectors are $\mathrm{X}_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) ; \mathrm{X}_{2}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$;

$$
X_{3}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

To check $\mathrm{X}_{1}, \mathrm{X}_{2} \& \mathrm{X}_{3}$ are orthogonal

$$
\begin{gathered}
\mathrm{X}_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)=0-1+1=0 \\
\mathrm{X}_{2}{ }^{\mathrm{T}} \mathrm{X}_{3}=\left(\begin{array}{lll}
2 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)=2-1-1=0 \\
\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right)=0+1-1=0
\end{gathered}
$$

Normalized Eigen vectors are

$$
\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
\frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{-1}{\sqrt{3}}
\end{array}\right)
$$

Normalized modal matrix

$$
\begin{aligned}
\mathrm{N} & =\left(\begin{array}{lll}
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}}
\end{array}\right) \\
\mathrm{N}^{\mathrm{T}} & =\left(\begin{array}{lll}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

Thus the diagonal matrix $\mathrm{D}=\mathrm{N}^{\mathrm{T}} \mathrm{AN}$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -2 \\
-1 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}}
\end{array}\right) \\
\mathrm{D} & =\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

Canonical form $=Y^{T}$ DY where $\mathrm{Y}=\left(\begin{array}{l}\mathrm{y}_{1} \\ \mathrm{y}_{2} \\ \mathrm{y}_{3}\end{array}\right)$

$$
\begin{aligned}
Y^{T} \mathrm{DY}= & \left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\mathrm{y}_{3}
\end{array}\right) \\
& =-y_{1}^{2}+{y_{2}}^{2}+4 y_{3}^{2}
\end{aligned}
$$

