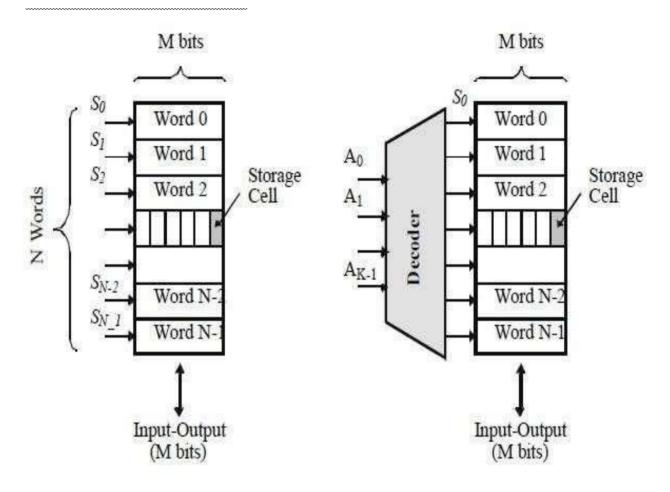
Memory Architecture

Memory Classification:

Read-Write Memory		Non-Volatile Read-Write Memory	Read-Only Memory
Random Access	Non-Random Access	EFROM E ² PE OM	Mazz-P. ogrammed P. ogrammable (PR. (M
SRAM ERAM	FIFC LIFC	FLASH	1/1
95	Shiff Register	2	


STATIC (SRAM):

- Data stored as long as supply is applied
- Large (6 transistors/cell)
- Fast
- Differential

DYNAMIC (DRAM):

- Periodic refresh required
- Small (1-3 transistors/cell)
- Slower
- Single Ended

Memory Architecture: Decoders:

N words => N select signals
Too many select signals

Decoder reduces # of select signals $K = log_2 N$

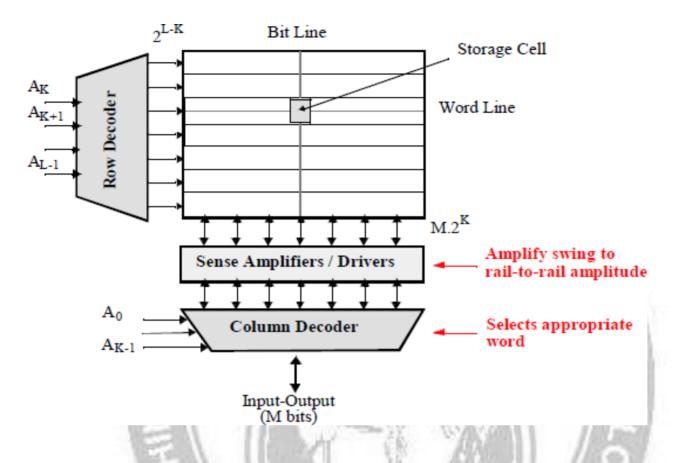


Fig 4.7.1: Array-Structured Memory Architecture:

[Source: Sung-Mo kang, Yusuf leblebici, Chulwoo Kim —CMOS Digital Integrated Circuits: Analysis & Design]

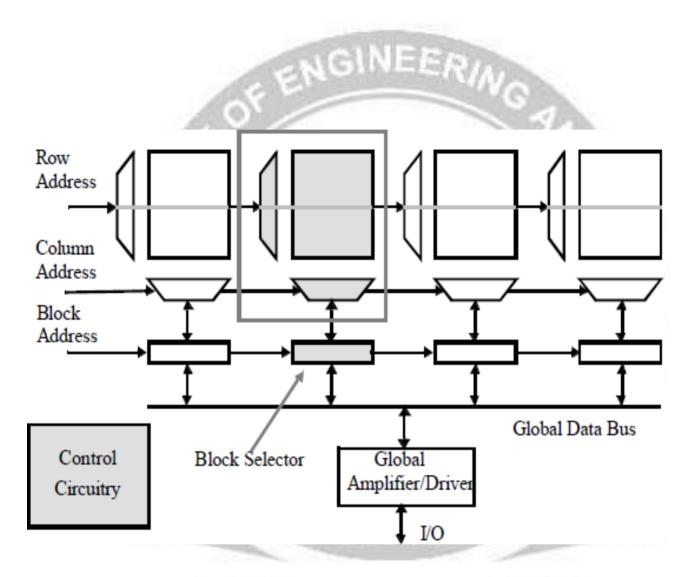


Fig 4.7.2: Hierarchical Memory Architecture

[Source: Sung-Mo kang, Yusuf leblebici, Chulwoo Kim —CMOS Digital Integrated Circuits: Analysis & Design]

Advantages:

- Shorter wires within blocks
- Block address activates only one block hence, power savings.

Tradeoffs

- 1) Speed, area and power can be trade off through the choice of the supply voltages, transistor threshold and device sizes.
- 2) Some design techniques are implemented at design time.
- 3) Transistor width s and lengths can be fixed at the time of design.
- 4) A reduction in supply voltage results in power savings and thus is the most attractive approach.
- 5) Reduced supply evenly lowers the power dissipation of all the logic gates.
- 6) In this approach, non –critical path having timing slack is supplied with low voltage without affecting the system performance.
- 7) Important design concepts:
 - a) To select right structure before starting an circuit optimization.
 - b) Determine the critical timing path through the circuit.
 - c) Circuit size is not only determined by the number and size of the transistors.
 - d) An obscure optimization can sometimes help to get a better result.
 - e) Power and speed can be traded off through a choice of circuit sizing, supply voltages and transistor threshold