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UNIT II - HIERARCHICAL DATA STRUCTURES 

Binary Search Trees: Basics – Querying a Binary search tree – Insertion and 

Deletion- Red Black trees: Properties of Red-Black Trees – Rotations – Insertion – 

Deletion -B-Trees: Definition of B - trees – Basic operations on B-Trees – Deleting a key 

from a B-Tree- Heap – Heap Implementation – Disjoint Sets - Fibonacci Heaps: structure 

– Mergeable-heap operations- Decreasing a key and deleting a node-Bounding the 

maximum degree. 

 
FIBONACCI HEAPS: STRUCTURE – MERGEABLE 

A fibonacci heap is a data structure that consists of a collection of trees which follow 

min heap or max heap property. We have already discussed the min heap and max heap 

property in the In a fibonacci heap, a node can have more than two children or no children 

at all. Also, it has more efficient heap operations than that supported by the binomial and 

binary heaps. 

The fibonacci heap is called a fibonacci heap because the trees are constructed in a 

way such that a tree of order n has at least Fn+2 nodes in it, where Fn+2 is the (n + 2)th 

Fibonacci number. 

 

Properties of a Fibonacci Heap 

Important properties of a Fibonacci heap are: 

● It is a set of min heap-ordered trees. (i.e. The parent is always smaller than the 

children.) 

● A pointer is maintained at the minimum element node. 

● It consists of a set of marked nodes. (Decrease key operation) 

● The trees within a Fibonacci heap are unordered but rooted. 

 

 

https://cs.lmu.edu/~ray/notes/orderedtrees/
https://mathworld.wolfram.com/RootedTree.html
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Memory Representation of the Nodes in a Fibonacci Heap 

The roots of all the trees are linked together for faster access. The child nodes of a 

parent node are connected to each other through a circular doubly linked list as shown 

below. There are two main advantages of using a circular doubly linked list. 

● Deleting a node from the tree takes O(1) time. 

● The concatenation of two such lists takes O(1) time. 

 

 

 

 

Fibonacci Heap Structure 

Operations on a Fibonacci Heap 

 

Insertion 

 

Algorithm 

 

insert(H, x) degree[x] = 0 p[x] = NIL 

child[x] = NIL left[x] = x right[x] = x mark[x] = FALSE 

concatenate the root list containing x with root list H if min[H] == NIL or key[x] < 

key[min[H]] 

then min[H] = x n[H] = n[H] + 1 

 

Inserting a node into an already existing heap follows the steps below. 

1. Create a new node for the element. 

2. Check if the heap is empty. 
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3. If the heap is empty, set the new node as a root node and mark it min. 

4. Else, insert the node into the root list and update min.
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Find Min 

The minimum element is always given by the min pointer. 

Union 

Union of two fibonacci heaps consists of the following steps. 

 

1. Concatenate the roots of both the heaps. 

2. Update min by selecting a minimum key from the new root lists.
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Union of two heaps 

 

Extract Min 

It is the most important operation on a fibonacci heap. In this operation, the node 

with minimum value is removed from the heap and the tree is re-adjusted. 

The following steps are followed: 

1. Delete the min node. 

2. Set the min-pointer to the next root in the root list. 

3. Create an array of size equal to the maximum degree of the trees in the heap before 

deletion. 

4. Do the following (steps 5-7) until there are no multiple roots with the same degree. 

5. Map the degree of current root (min-pointer) to the degree in the array. 

6. Map the degree of next root to the degree in array. 

7. If there are more than two mappings for the same degree, then apply union operation 

to those roots such that the min-heap property is maintained (i.e. the minimum is at 

the root). 
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An implementation of the above steps can be understood in the example below. We will 

perform an extract-min operation on the heap below. 

 

 

 

Delete the min node, add all its child nodes to the root list and set the min-pointer to the 

next root in the root list. 

 

Delete the min node 

The maximum degree in the tree is 3. Create an array of size 4 and map the degree 

of the next roots with the array. 
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Create an array 

Here, 23 and 7 have the same degrees, so unite them. 

 

 

Unite those having the same degrees 

Again, 7 and 17 have the same degrees, so unite them as well. 

 

 

Unite those having the same degrees 

Map the next nodes. 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

 

Map the remaining nodes 

Again, 52 and 21 have the same degree, so unite them 

 

 

Unite those having the same degrees
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Similarly, unite 21 and 18. 

 

 

Unite those having the same degrees 

Map the remaining root. 

 

 

Map the remaining nodes
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The final heap is. 

 

 

Heap operations- Decreasing a key and deleting a node 

Operations on Heaps 

Heap is a very useful data structure that every programmer should know well. The 

heap data structure is used in Heap Sort, Priority Queues. The understanding of heaps helps 

us to know about memory management. In this blog, we will discuss the various operations 

of the heap data structure. We have already discussed what are heaps, its structure, types, 

and its representation in the array in the last blog. So let’s get started with the operations 

on a heap. 

 

Operations on Heaps 

The common operation involved using heaps are: 

● Heapify → Process to rearrange the heap in order to maintain heap-property. 
● Find-max (or Find-min) → find a maximum item of a max-heap, or a minimum 

item of a min- heap, respectively. 
● Insertion → Add a new item in the heap. 
● Deletion → Delete an item from the heap. 
● Extract Min-Max → Returning and deleting the maximum or minimum 

element in max-heap and min-heap respectively. 
Heapify 

It is a process to rearrange the elements of the heap in order to maintain the heap 

property. It is done when a certain node causes an imbalance in the heap due to some 

operation on that node. 

The heapify can be done in two methodologies: 

https://afteracademy.com/blog/introduction-to-heaps-in-data-structures
https://afteracademy.com/blog/introduction-to-heaps-in-data-structures
https://afteracademy.com/blog/introduction-to-heaps-in-data-structures
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● up_heapify() → It follows the bottom-up approach. In this, we check if the nodes 
are following heap property by going in the direction of rootNode and if nodes 
are not following the heap property we do certain operations to let the tree 
follows the heap property. 

● down_heapify() → It follows the top-down approach. In this, we check if the 
nodes are following heap property by going in the direction of the leaf nodes 
and if nodes are not following the heap property we do certain operations to let 
the tree follows the heap property. 
 

Pseudo Code 

void down_heapify(int heap[], int parent, int size) 

{ 

largest = parent leftChild = 2*parent + 1 

rightChild = 2*parent + 2 

if(leftChild < size && heap[leftChild] > heap[largest])  

largest = leftChild 

if(rightChild < size && heap[rightChild] > heap[largest])  

largest = rightChild 

if(parent != largest) 

{ 

swap(heap[parent], heap[largest]) down_heapify(heap,largest,size) 

} 

} 

void up_heapify(int heap[], int child) 

{ 

parent = (child-1)/2;  

if(heap[parent] < heap[child])  

{ 

swap(heap[parent], heap[child]) up_heapify(heap,parent) 

} 

} 

 

Insertion 

The insertion in the heap follows the following steps 

● Insert the new element at the end of the heap. 

● Since the newly inserted element can distort the properties of the Heap. So, we need 

to perform up_heapify() operation, in order to keep the properties of the heap in a 

bottom-up approach.
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Initially the heap is as (It follows max-heap property) 

 

       9 

      /  \ 

  5 3 

/ \ 

       1       4 

 

New element to be inserted is 12 

Step 1: Insert the new element at the end. 

      9 

  /      \ 

5 3 

         / \       / 

      1   4   12 

 

Step 2: Heapify the new element following bottom-up approach.  

     12 

/ \ 

      5              9 

   /     \           / 

1         4     3 

Pseudo Code 

void up_heapify(int heap[], int child) 

{ 

parent = (child-1)/2; 

if(heap[parent] < heap[child])  

{  

swap(heap[parent], heap[child]) up_heapify(heap,parent) 

} 

} 

void insert(int heap[],int size,int key) 

{ 

heap.append(key) up_heapify(heap,size+1,size) 

} 

 

Deletion 

The deletion operations follow the following step: 

● Replace the element to be deleted by the last element in the heap. 

● Delete the last item from the heap.
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● Now, the last element is placed at some position in heap, it may not follow the 

property of the heap, so we need to perform down_heapify() operation in order to 

maintain heap structure. The down_heapify() operation does the heapify in the top-

bottom approach. 

 

The standard deletion on Heap is to delete the element present at the root node of 

the heap. 

 

Initially the heap is(It follows max-heap property)  

     12 

  /       \ 

6 3 

         /     \ 

      1          4 

 

Element to be deleted is 12 

 

Step 1: Replace the last element with root, and delete it. 

 4 

/  \ 

         6     3 

       /  

    1 

 

Step 2: Heapify root.  

6 

        /      \ 

    4       3 

  /  

1 

Pseudo-Code 

void down_heapify(int heap[], int parent, int size) 

{ 

largest = parent leftChild = 2*parent + 1 

rightChild = 2*parent + 2 

if(leftChild < size && heap[leftChild] > heap[largest])  

largest = leftChild 

if(rightChild < size && heap[rightChild] > heap[largest])  

largest = rightChild 

if(parent != largest) 

{ 
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swap(heap[parent], heap[largest]) down_heapify(heap,largest,size) 

} 

} 

void deleteRoot(int heap[], int size) 

{ 

swap(heap[0], heap[size-1]) // swap first and last element 

heap.pop_back(); // delete the last element down_heapify(heap,0,size-1) 

} 

 

Find-max (or Find-min) 

The maximum element and the minimum element in the max-heap and min-heap is 

found at the root node of the heap. 

int findMax(int heap[]) 

{ 

return heap[0] 

} 

 

Extract Min-Max 

This operation returns and deletes the maximum or minimum element in max-heap 

and min-heap respectively. The maximum element is found at the root node. 

int extractMax(int heap[], int size) 

{ 

ans = heap[0] deleteRoot(heap, size) return ans 

} 

 

Bounding the maximum degree. 

Bounding the maximum degree: To prove that the amortized time of FIB-HEAP- 

EXTRACT-MIN and FIB-HEAP-DELETE is O(lg n), we must show that the upper bound 

D(n) on the degree of any node of an n-node Fibonacci heap is O(lg n). The cuts that occur 

in FIB- HEAP-DECREASE-KEY, however, may cause trees within the Fibonacci heap to 

violate the unordered binomial tree properties. In this section, we shall show that because 

we cut a node from its parent as soon as it loses two children, D(n) is  

O(lg n). In particular, we shall show that D(n) ≤ ⌊logφn⌋, where . 
The key to the analysis is as follows. For each node x within a Fibonacci heap, 

define size(x) to be the number of nodes, including x itself, in the subtree rooted at x. (Note 

that x need not be in the root list-it can be any node at all.) We shall show that size(x) is 

exponential in degree[x]. Bear in mind that degree[x] is always maintained as an accurate 

count of the degree of x.
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Lemma 20.1 

Let x be any node in a Fibonacci heap, and suppose that degree[x] = k. Let y1, y2, . 

. . , yk denote the children of x in the order in which they were linked to x, from the earliest 

to the latest. Then, degree[y1] ≥ 0 and degree[yi] ≥ i - 2 for i = 2, 3, . . . , k. 

Proof  

Obviously, degree[y1] ≥ 0. 

For i ≥ 2, we note that when yi was linked to x, all of y1, y2, . . . , yi-1 were children 

of x, so we must have had degree[x] = i - 1. Node yi is linked to x only if degree[x] = 

degree[yi], so we must have also had degree[yi] = i - 1 at that time. Since then, node yi has 

lost at most one child, since it would have been cut from x if it had lost two children. We 

conclude that degree[yi ] ≥ i - 2. 

We finally come to the part of the analysis that explains the name "Fibonacci heaps." 

Recall from Standard notations and common functions that for k = 0, 1, 2, . . . , the kth 

Fibonacci number is defined by the recurrence 

The following lemma gives another way to express Fk. 

Lemma 20.2 

For all integers k ≥ 0, 

 

Proof  

The proof is by induction on k. When k = 0, 

 

We now assume the inductive hypothesis that , and we have 

The following lemma and its corollary complete the 

analysis. They use the in-equality Fk 2 ≥ φk 

 


