1.4. INTER RELATIONS:-

Soil Element interms of ' e '

Fig - 1.2 Phase diagram

1) Relation between ' e ' and ' n '

$$
\begin{gathered}
n=\frac{V_{v}}{V} \\
\mathrm{~V}=\mathrm{V}_{\mathrm{v}}+\mathrm{V}_{\mathrm{s}} \\
e=\frac{V_{v}}{V_{s}} \\
e=\frac{V_{v}}{V-V_{v}}
\end{gathered}
$$

Divide V_{v} on top and bottom

$$
\begin{aligned}
e & =\frac{1}{\frac{V}{V_{v}}-1} \\
& =\frac{1}{\frac{1}{n}-1} \\
& =\frac{1}{\frac{1-n}{n}} \\
e & =\frac{n}{1-n}
\end{aligned}
$$

2) Relation between 'e, s, w' and ' G '

Refer fig $1.4 \mathrm{e}-$ water voids ratio

$$
\begin{aligned}
& G=\frac{\frac{W_{s}}{V_{s}}}{\frac{W_{w}}{V_{w}}} \\
& =\frac{W_{s}}{V_{s}} x \frac{V_{w}}{W_{w}} \\
& =\frac{W_{s}}{W_{w}} X \frac{V_{w}}{V_{s}} \\
& =\frac{1}{w} X \frac{V_{w}}{V_{s}}
\end{aligned}
$$

Fig 1.4 Three phase diagram

Multiply and divide by V_{v}

$$
\begin{gathered}
G=\frac{1}{w} X \frac{V_{w}}{V_{v}} X \frac{V_{v}}{V_{s}} \\
G=\frac{1}{w} x S_{r} X e \\
\mathrm{~W} \times \mathrm{G}=\mathrm{S}_{\mathrm{r}} \mathrm{Xe}
\end{gathered}
$$

For fully saturated $S_{r}=1$

$$
\mathrm{e}=\mathrm{w} \cdot \mathrm{G}
$$

3) Relation between ' γ, γ_{d} ' and ' w '

We have

$$
\begin{gathered}
w=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{~W}_{\mathrm{s}}} \\
1+w=\frac{W_{w}}{W_{s}}+1 \\
=\frac{\mathrm{w}_{\mathrm{w}}+\mathrm{W}_{\mathrm{s}}}{\mathrm{~W}_{\mathrm{s}}} \\
=\frac{W}{W_{s}} \\
W_{s}=\frac{w}{1+w}
\end{gathered}
$$

Dividing both sides by ' V ' then we get,

$$
\frac{W_{s}}{V}=\frac{w}{V(1+w)}
$$

Finally,

$$
\gamma_{d}=\frac{\gamma}{1+w}
$$

2) Relation between ' $\gamma, \gamma_{d}, \gamma_{s a t}$ ' and ' γ '

Refer fig 1.4,

$$
\begin{aligned}
& \text { We have } \gamma=\frac{W}{V} \\
& =\frac{w_{s}+W_{w}}{V} \\
& =\frac{V_{s} \gamma_{s}+V_{w} \gamma_{w}}{V}
\end{aligned}
$$

Therefore $\gamma=\frac{1 . \gamma_{s}+e_{w} \gamma_{w}}{1+e}$

$$
\begin{aligned}
= & \frac{G \gamma_{w}+e \cdot s \cdot \gamma_{w}}{1+e} \\
= & \frac{(G+e s) \gamma_{w}}{1+e}
\end{aligned}
$$

For dry soil mass, $\mathrm{s}=0$

$$
\gamma=\frac{G \cdot \gamma_{w}}{1+e}
$$

For fully saturated soil mass, $\mathrm{s}=1, \gamma=\gamma_{\text {sat }}$
So that,

$$
\gamma_{s a t}=\frac{(G+e) \gamma_{w}}{1+e}
$$

For submerged condition, $\gamma^{\prime}=\gamma_{s a t}-\gamma_{\mathrm{w}}$

$$
\begin{gathered}
\gamma^{\prime}=\frac{(G+e) \gamma_{w}}{1+e}-\gamma_{w} \\
=\frac{(G+e) \gamma_{w}-\gamma_{w}(1+e)}{1+e} \\
=\frac{G \gamma_{w}-\gamma_{w}}{1+e}
\end{gathered}
$$

finally,

$$
\gamma^{\prime}=\frac{(G-1) \gamma_{w}}{1+e}
$$

4) Relation between ' e, s ' and ' $\mathrm{n}_{\underline{a}}$,

$$
n_{a}=\frac{e(1-s)}{1+e}
$$

5) Relation between ' $n_{\underline{a}}, a_{\underline{c}}$ ' and ' n '

$$
n_{a}=n \cdot a_{c}
$$

6) Relation between ' γ_{d}, G ' and ' n '

$$
\gamma_{d}=(1-n) G \gamma_{\mathrm{w}}
$$

7) Relation between ' $\gamma_{\text {sat }}$, G ' and ' n '

$$
\gamma_{\text {sat }}=(1-n) G \gamma_{\mathrm{w}}+n \cdot \gamma_{\mathrm{w}}
$$

8) Relation between ' γ ', γ_{d} ' and ' n '

$$
\gamma^{\prime}=\gamma_{d}-(1-n) \gamma_{\mathrm{w}}
$$

9) Relation between ' $\gamma_{\text {sat }}, \gamma, \gamma_{d}$ ' and ' s '

$$
\gamma=\gamma_{d}+s\left(\gamma_{s a t}-\gamma_{d}\right)
$$

10) Relation between ' $\gamma_{d}, G, w^{\prime}$ and ' s '

$$
\gamma_{\mathrm{d}}=\frac{\mathrm{G} \cdot \gamma_{\mathrm{w}}}{1+\frac{\mathrm{w}}{\mathrm{~s}}} \text { if } \mathrm{S}=1 \quad \gamma_{\mathrm{d}}=\frac{\mathrm{G} \cdot \gamma_{\mathrm{w}}}{1+\mathrm{w}_{\mathrm{sat}} \cdot \mathrm{G}}
$$

11) Relation between ' $\gamma_{\underline{d}}, G, W$ ' and ' $\mathrm{n}_{\underline{a}}$ '

$$
\gamma_{\mathrm{d}}=\frac{\left(1-\mathrm{n}_{\mathrm{a}}\right) \mathrm{G} \cdot \gamma_{\mathrm{w}}}{1+\mathrm{w} \cdot \mathrm{G}}
$$

12) Density Index and Relative compaction

It is defined as the ratio of the difference between the voids ratio of the soil in its loosest state ' $\mathrm{e}_{\text {max }}$ ' and its natural voids ratio 'e' to the difference between the void ratio in the loosest and densest states. ($\mathrm{e}_{\min }$)

$$
\mathrm{ie}, I_{D}=\frac{\mathrm{e}_{\max }-\mathrm{e}}{\mathrm{e}_{\max }-\mathrm{e}_{\min }}
$$

It is also referred as Density Index (or) Relative density (or) Degree of density. It is used to express the relation the compactness or degree of compaction of a natural cohesion less soil deposit. Degree of compaction is also sometimes expressed interims of an index called relation compaction $\left(\mathrm{R}_{\mathrm{c}}\right)$.

$$
\text { ie, } \mathrm{R}_{\mathrm{c}}=\frac{\gamma_{\mathrm{d}}}{\gamma_{\mathrm{dmax}}} \text { or }=\frac{1+\mathrm{e}_{\mathrm{min}}}{1+\mathrm{e}}
$$

γ_{d} max - maximum dry density from compaction test.

PROBLEM

1) A soil sample in its undisturbed state was found to have volume of $105 \mathrm{~cm}^{3}$ and mass of 201 g . After oven drying the mass got reduced to 168 g . Compute (i) water content (ii) void ratio (iii) porosity (iv) degree of saturation (v) air content. Take $\mathrm{G}=$ 2.7

Given:
Volume of soil mass, $V=105 \mathrm{~cm}^{3}$
Mass of soil mass, $\mathrm{M}=201 \mathrm{~g}$
Dry mass of soil, $\mathrm{M}_{\mathrm{d}}=168 \mathrm{~g}$
Specific gravity, $G=2.7$

Solution :

(i) Water content,

$$
\begin{aligned}
& w=\frac{W_{w}}{W_{s} o r W_{d}}=\frac{201-168}{168} \\
& =0.196 \Rightarrow 19.6 \%
\end{aligned}
$$

(ii) Void ratio,

$$
\begin{gathered}
e=\frac{G \cdot \gamma_{w}}{\gamma_{d}}-1 \\
\gamma_{d}=\frac{G \cdot \gamma_{w}}{1+e}
\end{gathered}
$$

ie, Dry density, $\gamma_{d}=\frac{W_{s} o r W_{d}}{V}$

$$
=\frac{168}{105}=1.6 \mathrm{~g} / \mathrm{cm}^{3}
$$

void ratio,

$$
\begin{gathered}
e=\frac{G \cdot \gamma_{w}}{\gamma_{d}}-1 \\
=\frac{2.7 x 1}{\gamma_{d}}-1=0.69
\end{gathered}
$$

Porosity (n)

$$
n=\frac{e}{1+e}
$$

$$
\begin{gathered}
=\frac{0.69}{1+0.69} \\
=0.408=>40.8 \%
\end{gathered}
$$

(iii) Degree of saturation (s)

$$
\begin{gathered}
\text { Wkt, } e . s=w . G \\
S=\frac{w G}{e} \\
=\frac{0.190 X 2.7}{0.69} \\
=0.767 \Rightarrow 76.7 \%
\end{gathered}
$$

(iv) Air Content (a_{c})

$$
\mathrm{Wkt}, a_{c}=1-s \Rightarrow 1-0.767 \Rightarrow 0.233 \Rightarrow 23.3 \%
$$

2)A natural soil deposit has a bulk unit weight of $18.44 \mathrm{KN} / \mathrm{m}^{3}$ and water content of 5%. Calculate the amount of water required to be added to $1 \mathrm{~m}^{3}$ of soil to raise the water content to 15% Assume the voids ratio to remain constant. What will then be the degree of saturation? Assume $G=2.67$

Given :

$$
\begin{aligned}
& \gamma=18.44 \mathrm{KN} / \mathrm{m}^{3} \\
& \mathrm{~V}=1 \mathrm{~m}^{3} \\
& \mathrm{w}_{1}=5 \% \\
& \mathrm{w}_{2}=15 \% \\
& \mathrm{e}=\text { constant } \\
& \mathrm{G}=2.67
\end{aligned}
$$

Solution :--

$$
\begin{gathered}
\gamma_{d}=\frac{\gamma}{1+w} \\
=\frac{18.44}{1+0.05} \\
=17.56 \mathrm{KN} / \mathrm{m}^{3} \\
\gamma_{d}=\frac{W_{d}}{V}=17.56=\frac{W_{d}}{1} \\
\mathrm{~W}_{\mathrm{d}}=17.56 \mathrm{KN}
\end{gathered}
$$

If $\mathrm{W}=0.05(5 \%)$

$$
\begin{gathered}
w=\frac{W_{w}}{W_{s}} \\
0.05=\frac{W_{w}}{17.56} \\
\mathrm{~W}_{\mathrm{w}}=0.88 \mathrm{KN} \\
\gamma_{w}=\frac{w_{w}}{V_{w}} \\
9.81=\frac{0.88}{V_{w}} \\
\mathrm{~V}_{\mathrm{w}}=0.089 \mathrm{~m}^{3}
\end{gathered}
$$

If $\mathrm{W}=0.15(15 \%)$

$$
\begin{aligned}
& w=\frac{W_{d}}{W_{w}} \\
& 0.15=\frac{W_{w}}{17.56} \\
& \mathrm{~W}_{\mathrm{w}}=2.634 \mathrm{KN} \\
& \gamma_{w}=\frac{w_{w}}{V_{d}} \\
& 9.81=\frac{2.634}{V_{w}} \\
& \mathrm{~V}_{\mathrm{w}}=0.27 \mathrm{~m}^{3}
\end{aligned}
$$

The amount of water required to raise the water content $=0.270-0.089=0.181 \mathrm{~m}^{3}$

$$
\begin{aligned}
& \gamma_{d}=\frac{G \cdot \gamma_{w}}{1+e} \\
& 17.56=\frac{2.67 X 9.81}{1+e} \\
& \mathrm{e}=0.49 \\
& e=\frac{w . G}{S_{r}} \\
& 0.49=\frac{0.15 X 2.67}{S_{r}} \\
& S=0.81=81 \%
\end{aligned}
$$

3)A soil specimen has a water content of 10% and a wet unit weight of $20 \mathrm{kN} / \mathrm{m} 3$. If the specific gravity of solids is 2.70 , determine the dry unit weight, void ratio, and the
degree of saturation. Take $\gamma_{\mathrm{w}}=10 \mathrm{kN} / \mathrm{m}^{3}$.
Give data:

$$
\begin{aligned}
& \mathrm{w}=10 \% \\
& \gamma=20 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{G}=2.7 \\
& \gamma_{\mathrm{w}}=10 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

To Find:

$$
\begin{aligned}
& \gamma \mathrm{d}=? \\
& \mathrm{e}=? \\
& \mathrm{Sr}=?
\end{aligned}
$$

Solution:

$$
\begin{gathered}
\gamma_{d}=\frac{\gamma}{1+w} \\
=\frac{20}{1+w}=18.18 \mathrm{KN} / \mathrm{m}^{3} \\
1+e=\frac{G \cdot \gamma_{w}}{\gamma_{d}} \\
1+e=\frac{2.7 X 10}{18.18}=1.49 \\
\mathrm{e}=1.49-1=0.49 \\
S=\frac{w G}{e} \\
=\frac{0.1 X 2.7}{0.49}=0.551=55.1 \%
\end{gathered}
$$

4)A soil to be excavated from a borrow pit which has a density of $1.75 \mathrm{~g} / \mathrm{cc}$ and water content of 12%. The specific gravity of soil is 2.7 . the soil is compacted so that the water content is 18% and dry density $1.65 \mathrm{~g} / \mathrm{cc}$ for $1000 \mathrm{~m}^{3}$ of soil, in fill estimate,
a)The quantity of soil excavated from the pit in m^{3}
b)The amount of water to be added.Also determine the void ratio soil in borrow pit and fill.

Given:
$\rho=1.75 \mathrm{~g} / \mathrm{cc}, \mathrm{w}=12 \%, \mathrm{G}=2.67, \mathrm{~V}=1000 \mathrm{~m}^{3}$,
after compaction, $\gamma_{d}=1.65 \mathrm{~g} / \mathrm{cc}, \mathrm{w}=18 \%$

Solution :

Let us use suffix ' 1 ' for borrow pit and ' 2 ' for the fill
For the borrow pit $\quad \rho=\frac{G \rho_{\mathrm{w}}(1+\mathrm{w})}{1+\mathrm{e}}$

$$
\begin{gathered}
e_{1}=\frac{G \rho_{W}(1+W)}{\rho}-1 \\
=\frac{2.7 X(1+0.12)}{1.75}-1=0.728
\end{gathered}
$$

For the fill

$$
\begin{gathered}
\rho_{d}=\frac{G \rho_{w}}{1+e} \\
e_{2}=\frac{G \rho_{w}}{\rho_{d}}-1 \\
=\frac{2.7 X 1}{1.65}-1=0.636
\end{gathered}
$$

Since the volume of soilds remains constant

$$
\begin{gathered}
V_{s}=\frac{V_{1}}{1+e_{1}}=\frac{V_{2}}{1+e_{2}} \\
=\frac{1000}{1+0.636} \\
=611.1 \mathrm{~m}^{3} \\
\mathrm{~V}_{1}=611.1(1+0.728)=1056 \mathrm{~m}^{3} \\
w=\frac{M_{w}}{M_{d}} \\
\mathrm{M}_{\mathrm{d}}=\mathrm{M}_{\mathrm{s}}=\mathrm{V}_{\mathrm{s}} \mathrm{G} \cdot \rho_{\mathrm{w}}=611.1 \mathrm{X} 2.7 \mathrm{X} 1=1649.97 \\
\mathrm{M}_{\mathrm{w} 1}=\mathrm{M}_{\mathrm{d}} \cdot \mathrm{w}_{1}=1649.97 \mathrm{X} 0.12=197.996 \mathrm{~m}^{3} \\
\mathrm{M}_{\mathrm{w} 2}=\mathrm{M}_{\mathrm{d}} \cdot \mathrm{~W}_{2}=1649.97 \mathrm{X} 0.18=296.995 \mathrm{~m}^{3}
\end{gathered}
$$

Water to be added= $\mathrm{M}_{\mathrm{w} 2}-\mathrm{M}_{\mathrm{w} 1}=296.995-197.996=99 \mathrm{~m}^{3}$
5)A soil sample has a porosity of 40% The specific gravity of solids is 2.70.Calculate (a)voids ratio, (b)dry density, (c)unit weight if the soil is 50% saturated, and (d)unit weight if the soil is completely saturated.

Given:
$\mathrm{n}=40 \%=0.4$
$\mathrm{G}=2.7$

$$
\begin{gathered}
e=\frac{n}{1-n}=\frac{0.4}{1-0.4}=0.667 \\
\gamma_{d}=\frac{G \cdot \gamma_{w}}{1+e} \\
=\frac{2.7 X 9.81}{1+0.667}=15.89 \mathrm{KN} / \mathrm{m}^{3} \\
e=\frac{w G}{S} \\
w=\frac{e S}{G}=\frac{0.667 X 0.5}{2.7}=0.124 \\
\gamma=\gamma_{d}(1+w) \\
=15.89(1+0.124)=17.86 \mathrm{KN} / \mathrm{m}^{3}
\end{gathered}
$$

When the soil is fully saturated $\mathrm{e}=\mathrm{w} . \mathrm{G}$

$$
\begin{gathered}
w=\frac{e}{G} \\
=\frac{0.667}{2.7}=0.247 \\
\begin{aligned}
\gamma_{\text {sat }} & = \\
= & \gamma_{d}(1+w) \\
= & 15.89(1+0.247)=19.81 \mathrm{KN} / \mathrm{m}^{3}
\end{aligned}
\end{gathered}
$$

6)The insitu- density of an embankment, compacted at a water content of 12% was determined with the help of a core cutter. The empty mass of the cutter was 1286 g and the cutter full of soil has a mass of 3195 g , the volume of the cutter being 1000 cm 3 Determine the bulk density, dry density and the degree of saturation of the embankment.

If the embankment becomes fully saturated during rains, what would be its water content and saturated unit weight? Assume no volume changes in soil on saturation. Take the specific gravity of the soilas 2.70 .

Solution:

Mass of soil in cutter, $\mathrm{M}=3195-1286=1909 \mathrm{~g}$
Bulk density,$\rho=\frac{M}{V}$

$$
=\frac{1909}{1000}=1909 \mathrm{~g} / \mathrm{cm}^{3}
$$

$\gamma=9.81 \mathrm{X} 1.909=18.73 \mathrm{KN} / \mathrm{m} 3$

$$
\begin{gathered}
\gamma_{d}=\frac{\gamma}{1+w} \\
e=\frac{G \gamma_{w}}{\gamma_{d}}-1 \\
=\frac{2.7 \times 9.81}{16.72}-1=0.584 \\
S=\frac{w G}{e}=\frac{0.12 \times 2.7}{0.584}=0.55=55 \%
\end{gathered}
$$

At saturation since the volume remains the same ,the voids ratio also remains unchanged now,

$$
\begin{gathered}
\mathrm{e}=\mathrm{w} \cdot \mathrm{G} \\
w=\frac{e}{G}=\frac{0.584}{2.7}=0.216=21 . \% \\
\gamma_{s a t}=\frac{G+e}{1+e} \gamma_{w} \\
=\frac{2.7+0.584}{1+0.584} \times 9.81 \\
=20.34 \mathrm{KN} / \mathrm{m}^{3}
\end{gathered}
$$

7)The insitu- percentage voids of a sand deposit is 34%. For determining the density index, dried sand from the stratum was first filled loosely in a $1000 \mathrm{~cm}^{3}$ mould and was then vibrated to give a maximum density. The loose dry mass in the mould was 1610 g and the dense dry mass at maximum compaction was found to be 1980 g . Determine the density index if the specific gravity of the sand particles is 2.67.

Solution:

$$
\mathrm{n}=34 \%=0.34
$$

$$
\begin{gathered}
e=\frac{n}{1-n}=\frac{0.34}{1-0.34}=0.515 \\
\gamma_{d}=\frac{G \gamma_{w}}{1+e} \\
=\frac{2.67 X 9.81}{1+0.515}=17.289
\end{gathered}
$$

$$
\begin{aligned}
& \left(\gamma_{d}\right)_{\max }=\frac{1980}{1000} \times 9.81 \\
& \left(\gamma_{d}\right)_{\min }=\frac{1610}{1000} \times 9.81 \\
& =19.42 \mathrm{KN} / \mathrm{m}^{3} \\
& =15.79 \mathrm{KN} / \mathrm{m}^{3} \\
& e_{\min }=\frac{G \gamma_{w}}{\left(\gamma_{d}\right)_{\max }}-1 \\
& e_{\max }=\frac{G \gamma_{w}}{\left(\gamma_{d}\right)_{\min }}-1 \\
& =\frac{2.67 X 9.81}{19.42}-1=0.349 \\
& =\frac{2.67 X 9.81}{15.79}-1=0.659 \\
& I_{d}=\frac{\mathrm{e}_{\max -\mathrm{e}}}{\mathrm{e}_{\max }-\mathrm{e}_{\min }} \\
& =\frac{0.659-0.515}{0.659-0.349}=0.465=46.5 \%
\end{aligned}
$$

8)Sandy soil in a borrow pit has unit weight of solids as $26.3 \mathrm{kN} / \mathrm{m}^{3}$ equal to 11% and bulk unit weight equal to $16.4 \mathrm{kN} / \mathrm{m}^{3}$ How many cubic meter of compacted fill could be constructed of $3500 \mathrm{~m}^{3}$ of sand excavated from the borrow pit, if the required value of porosity in the compacted fill is 30% ? Also compute the change in degree of saturation.

Let us use suffix I for the borrow pit soil and 2 for the compacted soil. Assuming that weight and water content do not change during construction, the change in the volume can be calculated from the change in the unit weight.

$$
\begin{gathered}
\frac{V_{1}}{V_{2}}=\frac{W / \gamma_{1}}{W / \gamma_{2}}=\frac{\gamma_{2}}{\gamma_{1}}=\frac{1+e_{1}}{1+e_{2}} \\
V_{2}=V_{1} X \frac{1+e_{1}}{1+e_{2}}=V_{1} X \frac{1-n_{1}}{1-n_{2}}-\cdots--(1) \\
e=\frac{G \gamma_{w}}{\gamma_{d}}-1
\end{gathered}
$$

$$
\begin{gathered}
=\frac{\gamma_{s}}{\gamma /(1+w)}-1 \\
=\frac{\gamma_{s}(1+w)}{\gamma}-1 \\
=\frac{26.3(1+0.11)}{e_{1}=\frac{\gamma_{s}(1+w)}{\gamma_{1}}-1}=0.780 \\
e_{2}=\frac{n_{2}}{1-n_{2}} \\
=\frac{0.3}{1-0.3}=0.429 \\
V_{2}=V_{1} X \frac{1+e_{1}}{1+e_{2}} \\
=3500 X \frac{(1+0.429)}{(1+0.780)}=2810 m^{3} \\
S_{1}=\frac{w \gamma_{s}}{e_{1} \gamma_{w}}=\frac{0.11 X 26.3}{0.78 X 9.81}=0.378 \\
S_{2}=\frac{w \gamma_{s}}{e_{2} \gamma_{w}}=\frac{0.11 X 26.3}{0.429 X 9.81}=0.687
\end{gathered}
$$

Worked Example

1) A sample of dry soil weighs 68 gm . Find the volume of voids if the total volume of the sample is 40 ml and the specific gravity of solids is 2.65 . Also determine the void ratio.
2) A moist soil sample weighs 3.52 N .After drying in an oven, its weight is reduced to 2.9 N .The specific gravity of solids and the mass specific gravity are,respectively2.65 and 1.85.Determine the water content ad voidratio, porosity and the degree of saturation. Take $\gamma_{\mathrm{w}}=10 \mathrm{kN} / \mathrm{m}^{3}$.
3) A soil has a porosity of 40%, the specific gravify of solids of 2.65 and a water content of 12%.Determine the mass of water required to be added to $100 \mathrm{~m}^{3}$ of this soil for full saturation.
4) A sample of saturated soil has a water content of 25 perent and a bulk unit Weight of $20 \mathrm{kN} / \mathrm{m}^{3}$. Determine dry density, void ratio and specific gravity of
solid particles. What would be the bulk unit weight of the same soil at the same void ratio but at a degree of saturation of 80% ? Take $\gamma_{\mathrm{w}}=10 \mathrm{kN} / \mathrm{m}^{3}$.
5) A sample of clay was coated with paraffin wax and its mass, including the 1 mass of wax , was found to be 697.5 gm . The sample was immersed in water and the volume of water displaced was found to be 355 ml . The mass of the sample without wax was 690.0 g and the water content of the representative specimen was 18%.Determie the bulk density, dry density, void ratio and the degree of saturation. The specific gravity of the solids was 2.70 and that of the wax was 0.89 .
6) In a compaction test of a soil, the mass of wet soil when compacted in the mould was 1.855 kg . The water content of the soil was 16%.If the volume of the mould was 0.945 litres, determine the dry density, void ratio, degree of saturation and percentage air voids.TakeG=2.68.
