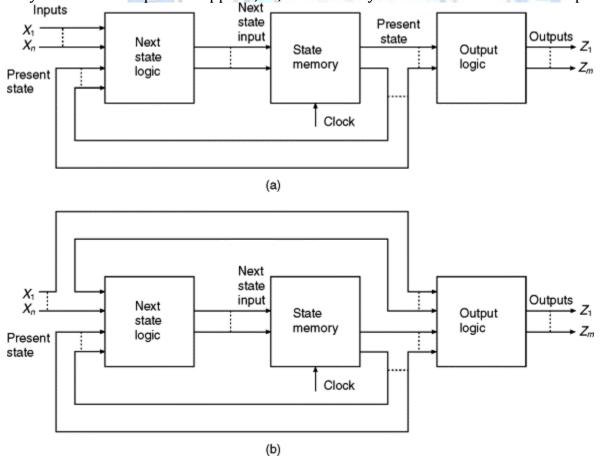
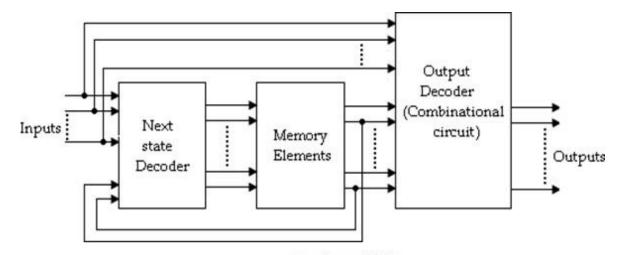
CLASSIFICATIONOFSYNCHRONOUSSEQUENTIALCIRCUIT:


In synchronous or clocked sequential circuits, clocked Flip-Flops are used as memory elements, which change their individual states in synchronism with the periodic clock signal. Therefore, the change in states of Flip-Flop and change in state of the entire circuits accurate the transition of the clock signal.

The synchronous or clocked sequential networks are represented by two models.

Moore model: The output depends only on the present state of the Flip-Flops. **Mealy model:** The output depends on both the present state of the Flip-Flops and on the inputs


Moore model:

In the Moore model, the outputs are a function of the present state of the Flip-Flops only. The out put depends only on present state of FlipFlops, it appears only after the clock pulse is applied, i.e., it varies in synchronism with the clock input.

Mealymodel:

In the Mealy model , the outputs are functions of both the present state of the $\mbox{\it Flip-}$ Flops and inputs

Difference between Moore and Mealymodel

S.No	Moore model	Mealy model			
1	Its output is a function of present	Its output is a function of present state			
	State only.	As well as present input.			
2	An input change does not affect the	Input changes may affect the output of			
	output.	The circuit.			
3	It requires more number of states	It requires less number of states for			
	For implementing same function.	Implementing same function.			

Mealy model

ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUIT:

ANALYSIS PROCEDURE:

The synchronous sequential circuit analysis is summarizes as given below:

- 1. AssignastatevariabletoeachFlip-Flopinthesynchronoussequentialcircuit.
- 2. Write the excitation input functions for each Flip-Flop and also write the Moore/Mealy output equations.
- 3. Substitute the excitation input functions into the b is table equations for the Flip- Flops to obtain the next state output equations.
- 4. Obtain the state table and reduced form of the state table.

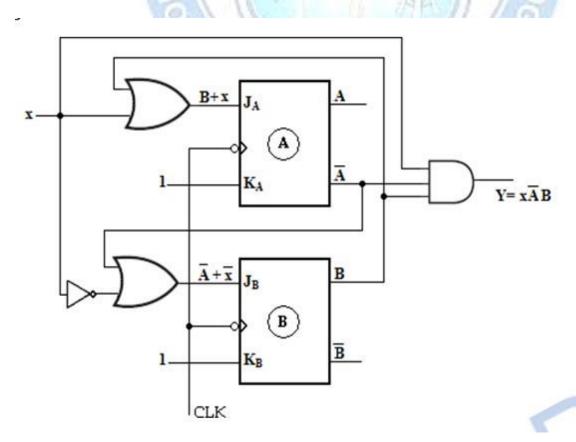
DEVIVISALAKSHI.G-AP/CSE/RCET

5. Draw the state diagram by using the second form of the state table.

ANALYSISOFMEALYMODEL:

A sequential circuit has two JK Flip-Flops A and B, one input(x) and one output(y).

1. A sequential circuit has two JK Flip-Flops A and B, one input(x) and one output the Flip-Flop input functions are,


JA=B+x JB=A'+x'

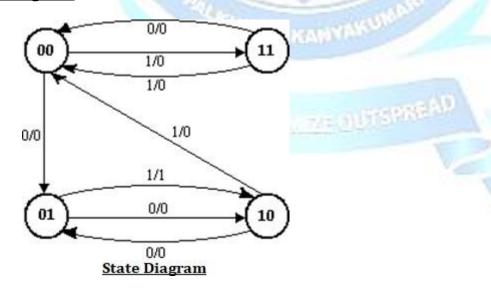
KA=1 KB=1

And the circuit output function, **Y=x A'B**.

- a) Draw the logic diagram of the Mealy circuit,
- b) Tabulate the state table,
- c) Draw the state diagram.

Logic Diagram:

DEVIVISALAKSHI.G-AP/CSE/RCET


State table:

Pre:	sent æ	Inp ut	Flip-Flop Inputs			Flip-Flop Inputs Next state			Out put
A	В	X	JA=B+ x	KA= 1	JB=A' +x'	KB =1	A(t +1)	B(t +1)	Y=xA 'B
0	0	0	0	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	0
0	1	0	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	1	1	0	1	0
1	0	1	1	1	0	1	0	0	0
1	1	0	1	1	1	1	0	0	0
1	1	1	1	1	0	1	0	0	0

Reduced State Table

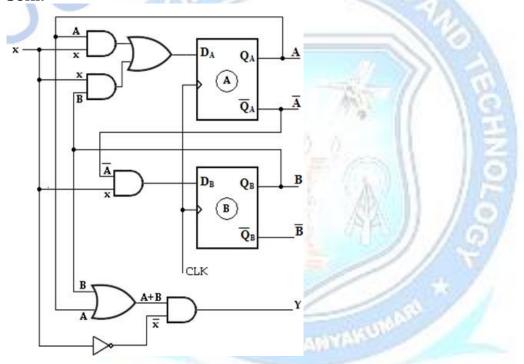
L	100							
	Prese	nt state		N st	Output			
			X=	x=0			x=0	x=1
	A	В	A	В	A	В	y	y
	0	0	0	1	77 1 W	1	0	0
	0	1	1	0	1	0	0	1
	1	0	0	1	0	0	0	0
	1	1	0	0	0	0 //	0	0

State Diagram:

2. A sequential circuit with two 'D' Flip-Flops A and B, one input(x) and one

DEVIVISALAKSHI.G-AP/CSE/RCET

output(y). The Flip-Flop input functions are:


DA = Ax + B

xDB=A'x

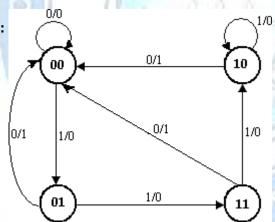
and the circuit output function is, Y=(A+B)x'.

- (a) Draw the logic diagram m of the circuit,
- (b) Tabulate the state table,
- (c) Draw the state diagram.

3. Soln:

Present state		Inpu t	Flip-FlopInputs		nextstate		Output
A	В	X	DA= Ax+Bx DB=A'x		A(t+1)	B(t+1)	Y=(A+B)x'
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	0

DEVIVISALAKSHI.G-AP/CSE/RCET


Prese	nt state		Nex	Output			
		X=	=0	X=	=1	x=0	x=1
A	A B		В	A	В	Y	Y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Second for m of state table

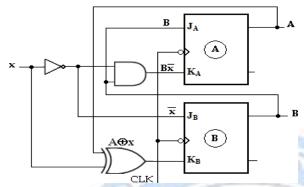
State Diagram:

Second for m of state table

State Diagram:

3. A sequential circuit has two JK Flip-Flop A and B. the

Flip-Flop input functions are: JA=B JB=x'


$$KA=Bx'$$
 $KB=A?x$.

- (a) Draw the logic diagram of the circuit,
- (b) Tabulate the state table,
- (c) Draw the state diagram.

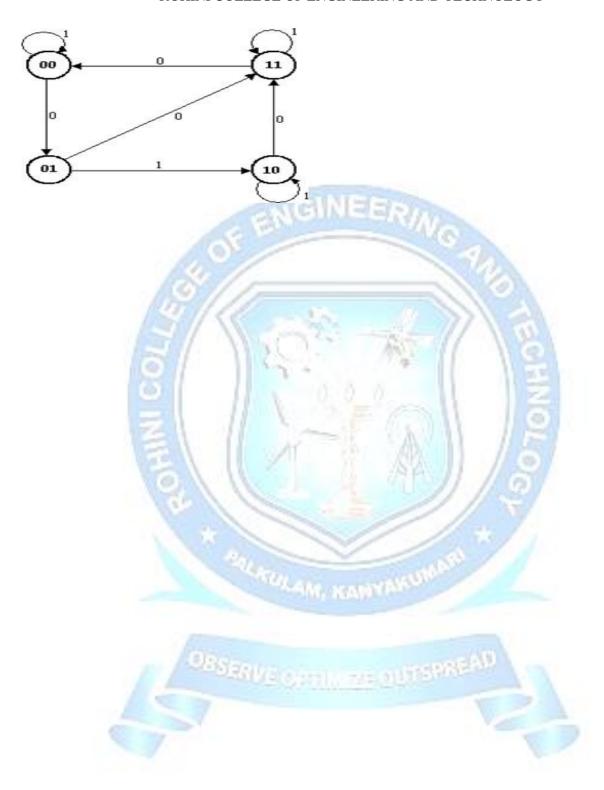
Soln:

DEVIVISALAKSHI.G-AP/CSE/RCET

Logic diagram

The output function is not given in the problem. The output of the Flip-

Flops maybe considered as the output of the circuit.


State table:

Pres ent state Inp u				Flip	Next state			
A	В	X	JA=B	KA=Bx	JB= x'	KB=A x	A(t+1)	B(t+ 1)
0	0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0
0	1	0	1	1	1	0	1 //	1
0	1	1	1\\	0	0	1	1/1/	0
1	0	0	0	0	1	1	1	1
1	0	1	0	0	0	0	1	0
1	1	0	1	1	1	1	0	0
1	1	1	1	0	0	0	1	1

Pres		Nex t stat e					
		:	X = 0	X = 1			
A B		A	В	A	В		
0	0	0	1	0	0		
0 1		1	1	1	0		
1 0		1	1	1	0		
1	1	0	0	1	1		

State Diagram

DEVIVISALAKSHI.G-AP/CSE/RCET

DEVIVISALAKSHI.G-AP/CSE/RCET
CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION