2.3 LATIN SQUARE:

Steps in constructing Latin Square

Step:1

Square the Grand total (T) and divide it by the number of observations (N). i.e), Find $\frac{T^{2}}{N}$ which is called the correction factor (C.F)

Step:2

Add the squares of the individual observations ($X_{i}{ }^{\prime} s$) and substract the C.F from it to get the total sum of squares. i.e)., Find Total sum of squares TSS

$$
\text { i.e)., } \operatorname{TSS}=\sum_{i}\left(X_{i}\right)^{2}-\frac{T^{2}}{N}
$$

Step:3

Add the squares of the row sums $\left(R_{i}\right)$ divide it by the number of items in a row and substract the C.F from the result to get the row sum of squares.

Row sum of squares $S S R=\frac{\left(\sum R_{i}\right)^{2}}{n_{1}}-C . F$
Where n_{1} is the number of items in a row.

Step:4

Add the squares of the columns sums $\left(C_{i}\right)$ divide it by the number of items and substract the C.F from the result to get the column sum of squares.

Column sum of squares $S S C=\frac{\left(\Sigma c_{j}\right)^{2}}{n_{2}}-C . F$
Where n_{2} is the number of items in a column.

Step:5

Sum of the squares of the treatment sums (T_{i}) divide it by the number of treatments and substract the C.F from it to get the treatment sum of squares, i.e., Treatment sum of squares.

$$
S S T=\frac{\left(\sum T_{i}\right)^{2}}{n_{i}}-C . F
$$

Where n_{i} is the number of treatments.
Step: 6

Substract the sum obtained in steps 3,4 , and 5 from 2 we get residual.
i.e)., Residual $S S E=T S S-(S S R+S S C+S S T)$

Step:7

Prepare the ANOVA table using all these and calculate the various mean squares as follows.

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F-Ratio
Between Rows	SSR	$\mathrm{n}-1$	$\mathrm{MSR}=\frac{S S R}{n-1}$	$F_{R}=\frac{M S R}{M S E}$ if MSR $>$ MSE $F_{R}=\frac{M S E}{M S R}$ if MSE $>$ MSR
Between Columns	SSC	$\mathrm{n}-1$	$\mathrm{MSC}=\frac{S S C}{n-1}$	$F_{c}=\frac{M S C}{M S E}$ if MSC> MSE $F_{c}=\frac{M S E}{M S C}$ if MSE $>$ MSC
Treatments	SST	$\mathrm{n}-1$	$\mathrm{MST}=\frac{S S T}{n-1}$	$F_{T}=\frac{M S T}{M S E}$ if MST $>$ MSE $F_{T}=\frac{M S E}{M S T}$ if MSE $>$ MST
Residual or Error	SSE	$(\mathrm{n}-1)(\mathrm{n}-2)$	$\begin{aligned} & \mathrm{MSE}= \\ & \frac{S S E}{(\mathrm{n}-1)(\mathrm{n}-2)} \end{aligned}$	

Step:8

Compute the F-ratio and find out whether the differences are significant or not according to the given level of significance.

1. Set up the analysis of variance for the following results of a Latin square design.

A	C	B	D
12	19	10	8
\mathbf{C}	B	D	A
18	12	$\mathbf{6}$	7
B	D	A	C
22	10	5	21
\mathbf{C}	A	C	B
12	7	27	17

Solution:
Set the null hypothesis H_{0} : There is no significance difference between the rows, columns and treatments.

Table I (To find TSS, SSR and SSC)

	C_{1}	C_{2}	C_{3}	C_{4}	Row Total R_{i}	$R_{i}{ }^{2} / 4$
R_{1}	12	19	10	8	49	600.25
R_{2}	18	12	6	7	43	462.25
R_{3}	22	10	5	21	58	841
R_{4}	12	7	27	17	63	992.25
Column Total C_{j}	64	48	48	53	$213(\mathrm{~T})$	2895.75
$C_{j}{ }^{2} / 4$	1024	576	576	702.25	2895.75	
$R_{4}{ }^{2} / 4$						

Table II (To find SST)

	1	2	3	4	Row Total T_{i}	$T_{i}{ }^{2} / 4$

Step:1

Grand total (\mathbf{T}) $=\mathbf{2 1 3}$

Step: 2

Correction factor (C.F) $=\frac{T^{2}}{N}=\frac{(213)^{2}}{16}=2835.56$
Step:3
Sum of squares of individual observations

$$
\begin{aligned}
= & (12)^{2}+(7)^{2}+(5)^{2}+(7)^{2}+(10)^{2}+(12)^{2}+(22)^{2}+(17)^{2}+ \\
& (19)^{2}+(18)^{2}+(21)^{2}+(27)^{2}+(8)^{2}+(6)^{2}+(10)^{2}+(12)^{2}
\end{aligned}
$$

$$
=3483
$$

Step:4

TSS =sum of squares of individual observations - C.F

$$
=\sum_{i}\left(X_{i}\right)^{2}-\frac{T^{2}}{N}=3486-2835.56=647.44
$$

Step:5

Row sum of squares

$$
S S R=\frac{\left(\sum R_{i}\right)^{2}}{4}-C . F=2895.75-2835.56=60.19
$$

Step:6

Column sum of squares $S S C=\frac{\left(\Sigma C_{j}\right)^{2}}{4}-C . F=2878.25-2835.56$

$$
=42.69
$$

Step:7

Sum of squares of Treatment

$$
S S T=\frac{\left(\sum T_{i}\right)^{2}}{n_{i}}-C . F=3300.75-2835.56=465.19
$$

Step:8

$$
\begin{aligned}
\text { Residual } S S E & =T S S-(S S R+S S C+S S T) \\
& =647.44-(60.19+42.69+465.19)=79.37
\end{aligned}
$$

Step:9

Prepare the ANOVA table using all these and calculate the various mean squares as follows.

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio

Between Rows	$\mathrm{SSR}=60.19$	$4-1=3$	$\mathrm{MSR}=\frac{S S R}{n-1}$ $=20.06$	$F_{R}=\frac{M S R}{M S E}=1.52$
Between Columns	$\mathrm{SSC}=42.69$	$4-1=3$	$\mathrm{MSC}=\frac{S S C}{n-1}$ $=14.23$	$F_{C}=\frac{M S C}{M S E}=1.08$
Treatments	$\mathrm{SST}=465.19$	$4-1=3$	$\mathrm{MST}=\frac{S S T}{n-1}$ $=155.06$	$F_{T}=\frac{M S T}{M S E}=11.73$
Residual or Error	$\mathrm{SSE}=79.37$	$(4-1)(4-2)$ $=6$	$\mathrm{MSE}=$ $\frac{S S E}{}$	

Step: 10

d.f for $(3,6)$ at 5% level of significance is 4.76

Step: 11 Conclusion:
Calculated value $F_{c}<$ Table value, then we accept null hypothesis.
There is no significance difference between the columns.
Calculated value $F_{R}<$ Table value, then we accept null hypothesis.
There is no significance difference between the rows.
Calculated value $F_{T}>$ Table value, then we reject null hypothesis.
There is a significance difference between the rows.

