1.5 INFLUENCE LINES FOR MEMBER FORCES IN PIN JOINTED PLANE FRAMES

Forces in the members of truss

Based on the loading conditions the members of truss experience torsion and compression. The diagonal members are in tension and vertical members are in compression. When the unit load is transmitted along the bottom chord members the influence 19ine diagrams will be drawn for different chord members.

Fig. 1.5.1 Truss

Top chord members

Consider a top chord member U1, U2 Let the support reactions be RA and RB. When a unit load is taken, three conditions are taken into considerations which are as follows

Fig. 1.5.2 Top Chord Members
I. When unit load is on the left side off L1
II. When unit load is on the right side off L2
III. When unit load is between L1 and L2

Rolling loads

Shifting of load positions is common enough in buildings. But they are more pronounced in bridges and in gantry girders over which vehicles keep rolling.

Reversal of stresses

In certain long trusses the web members can develop either tension or compression depending upon the position of live loads. This tendency to change the nature of stresses is called reversal of stresses.

Example :

Draw the influence line diagram for forces in the member of warren truss as shown below

Fig. 1.5.3

Solution

Fig. 1.5.4
The truss height ' h ' is

$$
h=4 \sin 60
$$

$\mathrm{h}=3.464 \mathrm{~m}$

Influence line for $\mathbf{F} \mathbf{U}_{\mathbf{2}} \mathbf{U}_{\mathbf{3}}$

considering a section AA

$$
\begin{aligned}
\mathrm{P}_{\mathrm{U} 2 \mathrm{U} 3} & =\mathrm{Ml}_{2} / \mathrm{h} \\
\mathrm{P}_{\mathrm{U} 2 \mathrm{U} 3} & =\mathrm{Ml}_{2} / 3.464 \quad(\text { compression }) \\
& =1 / 3.464(8 \times 12 / 20) \\
& =1.386(\text { under point } \mathrm{L} 2)
\end{aligned}
$$

Fig. 1.5.5 ILD for $F \mathbf{U}_{\mathbf{2}} \mathbf{U}_{\mathbf{3}}$
Influence line for the Force in member $L_{1} L_{2}\left(F L_{1} L_{2}\right)$

$$
\begin{aligned}
& \mathrm{F}_{1} \mathrm{~L}_{2}=\mathrm{M}_{\mathrm{U} 2} / \mathrm{h} \\
& \left.\mathrm{~F} \mathrm{~L}_{1} \mathrm{~L}_{2}=\mathrm{M}_{\mathrm{U} 2} / 3.464 \text { (Tension }\right){ }_{2} 2
\end{aligned}
$$

When the load is acting on point A

$$
\mathrm{RB}=0
$$

$\mathrm{M}_{\mathrm{U} 2}$ and $\mathrm{F}_{1} \mathrm{~L}_{2} \quad=0$

When the load is acting on point L_{1}

$$
\begin{aligned}
\mathrm{RB} & =1 \times 4 / 20 \\
& =1 / 5
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{U} 2} & =\mathrm{RB} \times 14 \\
\mathrm{M}_{\mathrm{U} 2} & =1 / 5 \times 14 \\
& =2.8 \mathrm{KN}-\mathrm{m}
\end{array}
$$

sub the value of $\mathrm{M}_{\mathrm{U} 2}$ in eqn 2

$$
\begin{array}{ll}
\mathrm{F} \mathrm{~L}_{1} \mathrm{~L}_{2} & =1 / 3.464(1 / 5 \times 14) \\
\mathrm{F} \mathrm{~L}_{1} \mathrm{~L}_{2} & =0.808(\text { Tension })
\end{array}
$$

When the load is acting on point L 2 then

$$
\begin{aligned}
\mathrm{RA} & =1 \times 12 / 20 \\
& =3 / 5 \\
\mathrm{M}_{\mathrm{U} 2} & =\mathrm{RA} \times 6 \\
\mathrm{M}_{\mathrm{U} 2} & =3 / 5 \times 6
\end{aligned}
$$

sub the value of $\mathrm{M}_{\mathrm{U} 2}$ in eqn 2

$$
\begin{aligned}
\mathrm{FL}_{1} \mathrm{~L}_{2} & =\mathrm{M}_{\mathrm{U} 2} / 3.464 \\
& =1 / 3.464(3 / 5 \times 6)
\end{aligned}
$$

$\mathrm{F} \mathrm{L}_{1} \mathrm{~L}_{2}=1.039$ (tension)
when the load is acting on point B then

$$
\mathrm{RA}=0
$$

and
$\mathrm{M}_{\mathrm{U} 2}$ and $\mathrm{F}_{1} \mathrm{~L}_{2}=0$

Fig. 1.5.6 ILD for $\mathbf{L}_{1} \mathbf{L}_{2}\left(\mathrm{~F}_{\mathbf{L}_{1}} \mathrm{~L}_{2}\right)$
Influence line for $F \mathrm{U}_{2} \mathrm{~L}_{2}$

$$
\begin{aligned}
& =(\text { s.f }) L_{1} L_{2} \operatorname{Cosec} \emptyset \\
& =(\text { s.f }) L_{1} L_{2} \operatorname{Cosec} 60 \\
F U_{2} L_{2} \quad & =1.155(\text { s.f }) L_{1} L_{2}
\end{aligned}
$$

When the load is acting on point A

$$
\mathrm{RA}=1
$$

(s.f) $L_{1} L_{2}$ and

$$
\mathrm{F} \mathrm{U}_{2} \mathrm{~L}_{2} \quad=0
$$

when the load is acting on point load L1

$$
\begin{array}{ll}
\mathrm{F} \mathrm{U} \mathrm{U}_{2} & =\operatorname{cosec} \emptyset \times \mathrm{m} / \mathrm{n} \\
& =\operatorname{cosec} 60 \times 1 / 5 \\
\mathrm{~F} \mathrm{U}_{2} \mathrm{~L}_{2} & =0.231(\text { compression }) \\
\mathrm{F} \mathrm{U}_{2} \mathrm{~L}_{2} & =1.155 \times \mathrm{n}-\mathrm{m}-1 / \mathrm{n} \\
& =1.155 \times 5-1-1 / 5 \\
& \\
\mathrm{~F} \mathrm{U}_{2} \mathrm{~L}_{2} & =0.693 \text { (tension) }
\end{array}
$$

When the load is acting on point B

$$
\mathrm{RA}=0
$$

and
(s.f) $L_{1} L_{2}$ and

$$
\mathrm{F} \mathrm{U}_{2} \mathrm{~L}_{2} \quad=0
$$

Fig. 1.5.7 Influence line for $F \mathbf{U}_{\mathbf{2}} \mathbf{L}_{\mathbf{2}}$

Influence line for $\mathrm{F}_{2} \mathrm{~L}_{1}$

$$
\begin{array}{ll}
\mathrm{F} \mathrm{U}_{2} \mathrm{~L}_{2} & =\text { (s.f) } \mathrm{L}_{1} \mathrm{~L}_{2} \\
\operatorname{Cosec} \emptyset & =(\text { s.f }) \mathrm{L}_{1} \mathrm{~L}_{2} \operatorname{Cosec} 60 \\
& =1.155(\text { s.f }) \mathrm{L}_{1} \mathrm{~L}_{2}
\end{array}
$$

When the load is acting on point L1

$$
\begin{array}{ll}
\mathrm{F} \mathrm{U}_{2} \mathrm{~L}_{1} & =\text { tensile } \\
\mathrm{F} \mathrm{U}_{2} \mathrm{~L}_{1} & =\text { compressive }
\end{array}
$$

Fig. 1.5.8 Influence line for $\mathbf{F} \mathbf{U}_{\mathbf{2}} \mathbf{L}_{\mathbf{1}}$

Example:

Draw the IL for force in member BC and CI for the truss shown in figure, the of the height truss is 8 m and each segments is 8 m long

Fig. 1.5.9

Solution

Fig. 1.5.10
height of the truss $=8 \mathrm{~m}$

$$
\text { length } \begin{aligned}
& =8 \mathrm{~m} \\
\tan \emptyset & =8 / 8 \\
& =1 \\
\emptyset \quad & =45
\end{aligned}
$$

$\operatorname{Sin} \emptyset=\sin 45$

$$
=1 / \sqrt{ } 2
$$

$\cos \emptyset=\cos 45$

$$
=1 / \sqrt{ } 2
$$

Influence line for force in the Member $\mathrm{BC}\left(\mathrm{P}_{\mathrm{Bc}}\right)$

$$
\mathrm{P}_{\mathrm{Bc}} \quad=\mathrm{M}_{\mathrm{I}} / 9
$$

Moment at I $=a(1-a) / l$

$$
\begin{aligned}
& =16(48-16) / 48 \\
& =16 \times 32 / 48 \\
& =10.46
\end{aligned}
$$

Force in member BC

$$
\begin{aligned}
& =10.66 / 8 \\
& =1.33 \mathrm{KN}
\end{aligned}
$$

Fig. 1.5.11 Influence line for force in the Member BC ($\mathbf{P}_{\mathbf{B c}}$)

Influence line Diagram for force in Member CI (\mathbf{P}_{CI})

Fig. 1.5.12 Influence line for force in the Member $\mathbf{C I}\left(\mathbf{P}_{\mathrm{CI}}\right)$

At point I ordinate of I.LD

$$
\begin{aligned}
& =\mathrm{a} / \mathrm{l} \\
& =16 / 48 \\
& =1 / 3
\end{aligned}
$$

At point J ,ordinate of I.L.D

$$
\begin{aligned}
& =-\mathrm{a} / \mathrm{l}(\text { Compressive }) \\
& =-24 / 48 \\
& =-1 / 2
\end{aligned}
$$

Fig. 1.5.13 Influence line for force in the Member CI ($\mathbf{P}_{\mathbf{C I}}$)

