
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 1

DEPLOYMENT PIPELINE

In software development, a deployment pipeline is a system of automated

processes designed to quickly and accurately move new code additions and

updates from version control to production. In past development
environments, manual steps were necessary when writing, building, and

deploying code. This was extremely time consuming for both developers
and operations teams, as they were responsible for performing tedious

manual tasks such as code testing and code releases.

The introduction of automation in a deployment pipeline allowed

development teams to focus more on innovating and

https://www.pagerduty.com/resources/learn/how-to-build-an-engineering-team/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 2

improving the end product for the user. By reducing the need for any

manual tasks, teams are able to deploy new code updates much quicker and
with less risk of any human error.

In this article, we will break down the different stages of a deployment

pipeline, how one is built, the benefits of a deployment pipeline for software

development, as well as some helpful tools to get the most out of your
system.

Main Stages of a Deployment Pipeline

There are four main stages of a deployment pipeline:

1. Version Control

2. Acceptance Tests

3. Independent Deployment

4. Production Deployment

Version Control is the first stage of the pipeline. This occurs after a

developer has completed writing a new code addition and committed it to a
source control repository such as GitHub. Once the commit has been made,

the deployment pipeline is triggered and the code is automatically compiled,

unit tested, analyzed, and run through installer creation. If and when the new
code passes this version control stage, binaries are created and stored in an

artifact repository. The validated code then is ready for the next stage in the

deployment pipeline.

In the Acceptance Tests stage of the deployment pipeline, the newly

compiled code is put through a series of tests designed to verify the

code against your team’s predefined acceptance criteria. These tests will

need to be custom-written based on your company goals and user
expectations for the product. While these tests run automatically once

integrated within the deployment pipeline, it’s important to be sure to update

and modify your tests as needed to consistently meet rising user and
company expectations.

https://www.pagerduty.com/resources/learn/what-is-version-control/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 3

Once code is verified after acceptance testing, it reaches
the Independent Deployment stage where it is automatically deployed to a
development environment. The development environment should be identical

(or as close as possible) to the production environment in order to ensure an

accurate representation for functionality tests. Testing in a development
environment allows teams to squash any remaining bugs without affecting

the live experience for the user.

The final stage of the deployment pipeline is Production Deployment. This

stage is similar to what occurs in Independent Deployment, however, this is
where code is made live for the user rather than a separate development

environment. Any bugs or issues should have been resolved at this point to

avoid any negative impact on user experience. DevOps or operations
typically handle this stage of the pipeline, with an ultimate goal of zero

downtime. Using Blue/Green Drops or Canary Releases allows teams to

quickly deploy new updates while allowing for quick version rollbacks in
case an unexpected issue does occur.

Benefits of a Deployment Pipeline

Building a deployment pipeline into your software engineering system

offers several advantages for your internal team, stakeholders, and the end
user. Some of the primary benefits of an integrated deployment pipeline

include:

 Teams are able to release new product updates and features much faster.

 There is less chance of human error by eliminating manual

steps.

 Automating the compilation, testing, and deployment of code allows
developers and other DevOps team members to focus more on

continuously improving and innovating a product.

 Troubleshooting is much faster, and updates can be easily rolled back to
a previous working version.

 Production teams can better respond to user wants and needs with

faster, more frequent updates by focusing on smaller

https://www.pagerduty.com/blog/cost-of-it-downtime-overview/
https://www.pagerduty.com/blog/cost-of-it-downtime-overview/
https://www.pagerduty.com/resources/learn/essential-devops-roles/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 4

releases as opposed to large, waterfall updates of past production

systems.

How to Build a Deployment Pipeline

A company’s deployment pipeline must be unique to their company and user

needs and expectations, and will vary based on their type of product or

service. There is no one-size-fits-all approach to creating a deployment
pipeline, as it requires a good amount of upfront planning and creation of

tests.

When planning your deployment pipeline, there are three essential
components to include:

 Build Automation (Continuous Integration): Build automation, also

referred to as Continuous Integration or CI for short, are automated

steps within development designed for continuous integration – the
compilation, building, and merging of new code.

 Test Automation: Test automation relies on the creation of custom-

written tests that are automatically triggered throughout a deployment

pipeline and work to verify new compiled code

against your organization’s predetermined acceptance criteria.
 Deploy Automation (Continuous Deployment/Delivery): Like

continuous integration, deploy automation with Continuous
Deployment/Delivery (CD for short) helps expedite code delivery by

automating the process of releasing code to a shared repository, and

then automatically deploying the updates to a development or
production environment.

When building your deployment pipeline, the primary goal should be to

eliminate the need for any manual steps or intervention. This means writing

custom algorithms for automatically compiling/building, testing, and
deploying new code from development. By taking these otherwise tedious

and repetitive steps off developers and other DevOps team members, they

can focus more on creating new,
innovative product updates and features for today’s highly

competitive user base.

https://www.pagerduty.com/resources/learn/what-is-continuous-integration/
https://www.pagerduty.com/resources/learn/continuous-deployment/
https://www.pagerduty.com/resources/learn/continuous-deployment/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 5

What Are Continuous Integration (CI) and Continuous Delivery

(CD) Pipelines?

A Continuous Integration (CI) and Continuous Delivery (CD) Pipeline works by

continuously compiling, validating, and deploying new code updates as they are
written – rather than waiting for specific merge or release days. This allows teams

to make faster, more frequent updates to a product with improved accuracy from

introducing automated steps. CI/CD Pipelines are a key component of an efficient
full deployment pipeline.

Deployment Pipeline Tools

Making use of available tools will help to fully automate and get the most out

of your deployment pipeline. When first building a deployment pipeline, there

are several essential tool categories that must be addressed, including source
control, build/compilation, containerization, configuration management, and

monitoring.

A development pipeline should be constantly evolving, improving and

introducing new tools to increase speed and automation. Some favorite tools
for building an optimal deployment pipeline include:

 Jenkins

 Azure DevOps
 CodeShip

 PagerDuty

DEPLOYMENT TOOLS

DevOps tools make it convenient and easier for companies to

reduce the probability of errors and maintain continuous integration

in operations. It addresses the key aspects of a company. DevOps

tools automate the whole process and automatically build, test, and

deploy the features.

DevOps tools make the whole deployment process and easy going

https://www.knowledgehut.com/blog/devops/top-devops-tools

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 6

one and they can help you with the following aspects:

 Increased development.

 Improvement in operational efficiency.

 Faster release.

 Non-stop delivery.

 Quicker rate of innovation.

 Improvement in collaboration.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 7

 Seamless flow in the process chain.

The DevOps tools play a very vital role in every organization, all of

which are discussed here. Read along to know all about it.

DEPLOYMENT TOOLS

DevOps tools make it convenient and easier for companies to

reduce the probability of errors and maintain continuous integration

in operations. It addresses the key aspects of a company. DevOps

tools automate the whole process and automatically build, test, and

deploy the features.

DevOps tools make the whole deployment process and easy going

one and they can help you with the following aspects:

 Increased development.

 Improvement in operational efficiency.

 Faster release.

 Non-stop delivery.

 Quicker rate of innovation.

 Improvement in collaboration.

https://www.knowledgehut.com/blog/devops/top-devops-tools

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 8

 Seamless flow in the process chain.

The DevOps tools play a very vital role in every organization, all of

which are discussed here. Read along to know all about it.

Architecture

The following diagram shows the flow of data in a deployment pipeline. It
illustrates how you can turn your artifacts into resources.

Deployment pipelines are often part of a larger continuous
integration/continuous deployment (CI/CD) workflow and are typically
implemented using one of the following models:

 Push model: In this model, you implement the deployment pipeline using a

central CI/CD system such as Jenkins or GitLab. This CI/CD system might run

on Google Cloud, on-premises, or on a different cloud environment. Often, the

same CI/CD system is used to manage multiple deployment pipelines.

The push model leads to a centralized architecture with a few CI/CD systems

that are used for managing a potentially large number of resources or
applications. For example, you might use a single Jenkins or GitLab instance to

manage your entire production environment, including all its projects and

applications.
 Pull model: In this model, the deployment process is implemented by an agent

that is deployed alongside the resource–for example, in the

same Kubernetes cluster. The agent pulls artifacts or source code from a
centralized location, and deploys them locally. Each agent manages one or two

resources.

The pull model leads to a more decentralized architecture with a potentially

large number of single-purpose agents.

Compared to manual deployments, consistently using deployment pipelines
can have the following benefits:

 Increased efficiency, because no manual work is required.

 Increased reliability, because the process is fully automated and repeatable.

https://www.jenkins.io/doc/
https://docs.gitlab.com/ee/ci/
https://cloud.google.com/kubernetes-engine

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 9

 Increased traceability, because you can trace all deployments to changes in

code or to input artifacts.

To perform, a deployment pipeline requires access to the resources it manages:

 A pipeline that deploys infrastructure by using tools like Terraform might need
to create, modify, or even delete resources like VM instances, subnets, or

Cloud Storage buckets.

 A pipeline that deploys applications might need to upload new container

images to Artifact Registry, and deploy new application versions to App

Engine, Cloud Run, or Google Kubernetes Engine (GKE).

 A pipeline that manages settings or deploys configuration files might need to

modify VM instance metadata, Kubernetes configurations, or modify data

in Cloud Storage.

If your deployment pipelines aren't properly secured, their access to Google

Cloud resources can become a weak spot in your security posture. Weakened
security can lead to several kinds of attacks, including the following:

 Pipeline poisoning attacks: Instead of attacking a resource directly, a bad
actor might attempt to compromise the deployment pipeline, its configuration,

or its underlying infrastructure. Taking advantage of the pipeline's access to
Google Cloud, the bad actor could make the pipeline perform malicious actions

on Cloud resources, as shown in the following diagram:

 Supply chain attacks: Instead of attacking the deployment pipeline, a bad

actor might attempt to compromise or replace pipeline input—including source

code, libraries, or container images, as shown in the following diagram:

https://www.terraform.io/intro
https://cloud.google.com/appengine/docs
https://cloud.google.com/appengine/docs
https://cloud.google.com/run/docs
https://cloud.google.com/kubernetes-engine/docs
https://cloud.google.com/storage/docs

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 10

To determine whether your deployment pipelines are appropriately secured, it's

insufficient to look only at the allow policies and deny policies of Google
Cloud resources in isolation. Instead, you must consider the entire graph of

systems that directly or indirectly grant access to a resource. This graph
includes the following information:

 The deployment pipeline, its underlying CI/CD system, and its underlying

infrastructure

 The source code repository, its underlying servers, and its underlying

infrastructure

 Input artifacts, their storage locations, and their underlying infrastructure

 Systems that produce the input artifacts, and their underlying infrastructure

Complex input graphs make it difficult to identify user access to resources and
systemic weaknesses.

The following sections describe best practices for designing deployment

pipelines in a way that helps you manage the size of the graph, and reduce the
risk of lateral movement and supply chain attacks.

Assess security objectives

Your resources on Google Cloud are likely to vary in how sensitive they are.

Some resources might be highly sensitive because they're business critical or

confidential. Other resources might be less sensitive because they're ephemeral
or only intended for testing purposes.

To design a secure deployment pipeline, you must first understand the
resources the pipeline needs to access, and how sensitive these resources are.

The more sensitive your resources, the more you should focus on securing the
pipeline.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 11

The resources accessed by deployment pipelines might include:

 Applications, such as Cloud Run or App Engine

 Cloud resources, such as VM instances or Cloud Storage buckets

 Data, such as Cloud Storage objects, BigQuery records, or files

Some of these resources might have dependencies on other resources, for
example:

 Applications might access data, cloud resources, and other applications.

 Cloud resources, such as VM instances or Cloud Storage buckets, might

contain applications or data.

As shown in the preceding diagram, dependencies affect how sensitive a

resource is. For example, if you use an application that accesses highly

sensitive data, typically you should treat that application as highly sensitive.

Similarly, if a cloud resource like a Cloud Storage bucket contains sensitive
data, then you typically should treat the bucket as sensitive.

Because of these dependencies, it's best to first assess the sensitivity of your
data. Once you've assessed your data, you can examine the dependency chain
and assess the sensitivity of your Cloud resources and applications.

Categorize the sensitivity of your data

To understand the sensitivity of the data in your deployment pipeline, consider
the following three objectives:

 Confidentiality: You must protect the data from unauthorized access.

 Integrity: You must protect the data against unauthorized modification or

deletion.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 12

 Availability: You must ensure that authorized people and systems can access

the data in your deployment pipeline.

For each of these objectives, ask yourself what would happen if your pipeline
was breached:

 Confidentiality: How damaging would it be if data was disclosed to a bad

actor, or leaked to the public?

 Integrity: How damaging would it be if data was modified or deleted by a bad

actor?

 Availability: How damaging would it be if a bad actor disrupted your data

access?

To make the results comparable across resources, it's useful to introduce

security categories. Standards for Security Categorization (FIPS-199) suggests
using the following four categories:

 High: Damage would be severe or catastrophic

 Moderate: Damage would be serious

 Low: Damage would be limited

 Not applicable: The standard doesn't apply

Depending on your environment and context, a different set of categories could
be more appropriate.

The confidentiality and integrity of pipeline data exist on a spectrum, based on

the security categories just discussed. The following subsections contain

examples of resources with different confidentiality and integrity
measurements:

Resources with low confidentiality, but low, moderate, and high integrity

The following resource examples all have low confidentiality:

 Low integrity: Test data

 Moderate integrity: Public web server content, policy constraints for your

organization

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.199.pdf

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 13

 High integrity: Container images, disk images, application configurations,

access policies (allow and deny lists), liens, access-level data

Resources with medium confidentiality, but low, moderate, and high integrity

The following resource examples all have medium confidentiality:

 Low integrity: Internal web server content

 Moderate integrity: Audit logs

 High integrity: Application configuration files

Resources with high confidentiality, but low, moderate, and high integrity

The following resource examples all have high confidentiality:

 Low integrity: Usage data and personally identifiable information

 Moderate integrity: Secrets

 High integrity: Financial data, KMS keys

Categorize applications based on the data that they access

When an application accesses sensitive data, the application and the

deployment pipeline that manages the application can also become sensitive.
To qualify that sensitivity, look at the data that the application and the pipeline
need to access.

Once you've identified and categorized all data accessed by an application, you

can use the following categories to initially categorize the application before
you design a secure deployment pipeline:

 Confidentiality: Highest category of any data accessed

 Integrity: Highest category of any data accessed

 Availability: Highest category of any data accessed

This initial assessment provides guidance, but there might be additional factors
to consider—for example:

https://cloud.google.com/architecture/design-secure-deployment-pipelines-bp#categorize-the-sensitivity-of-your-data

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 14

 Two sets of data might have low-confidentiality in isolation. But when

combined, they could reveal new insights. If an application has access to both

sets of data, you might need to categorize it as medium- or high-confidentiality.

 If an application has access to high-integrity data, then you should typically
categorize the application as high-integrity. But if that access is read only, a

categorization of high-integrity might be too strict.

For details on a formalized approach to categorize applications, see Guide for

Mapping Types of Information and Information Systems to Security Categories
(NIST SP 800-60 Vol. 2 Rev1).

Categorize cloud resources based on the data and applications they host

Any data or application that you deploy on Google Cloud is hosted by a
Google Cloud resource:

 An application might be hosted by an App Engine service, a VM instance, or a

GKE cluster.

 Your data might be hosted by a persistent disk, a Cloud Storage bucket, or a

BigQuery dataset.

When a cloud resource hosts sensitive data or applications, the resource and the
deployment pipeline that manages the resource can also become sensitive. For

example, you should consider a Cloud Run service and its deployment pipeline
to be as sensitive as the application that it's hosting.

After categorizing your data and your applications, create an initial security

category for the application. To do so, determine a level from the following
categories:

 Confidentiality: Highest category of any data or application hosted

 Integrity: Highest category of any data or application hosted

 Availability: Highest category of any data or application hosted

When making your initial assessment, don't be too strict—for example:

 If you encrypt highly confidential data, treat the encryption key as highly

confidential. But, you can use a lower security category for the resource

containing the data.

https://csrc.nist.gov/publications/detail/sp/800-60/vol-2-rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-60/vol-2-rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-60/vol-2-rev-1/final
https://cloud.google.com/architecture/design-secure-deployment-pipelines-bp#categorize-the-sensitivity-of-your-data
https://cloud.google.com/architecture/design-secure-deployment-pipelines-bp#categorize-applications-based-on-the-data-that-they-access

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 15

 If you store redundant copies of data, or run redundant instances of the same

applications across multiple resources, you can make the category of the

resource lower than the category of the data or application it hosts.

Constrain the use of deployment pipelines

If your deployment pipeline needs to access sensitive Google Cloud resources,

you must consider its security posture. The more sensitive the resources, the

better you need to attempt to secure the pipeline. However, you might
encounter the following practical limitations:

 When using existing infrastructure or an existing CI/CD system, that
infrastructure might constrain the security level you can realistically achieve.

For example, your CI/CD system might only support a limited set of security

controls, or it might be running on infrastructure that you consider less secure

than some of your production environments.

 When setting up new infrastructure and systems to run your deployment

pipeline, securing all components in a way that meets your most stringent

security requirements might not be cost effective.

To deal with these limitations, it can be useful to set constraints on what
scenarios should and shouldn't use deployment pipelines and a particular

CI/CD system. For example, the most sensitive deployments are often better

handled outside of a deployment pipeline. These deployments could be manual,
using a privileged session management system or a privileged access
management system, or something else, like tool proxies.

To set your constraints, define which access controls you want to enforce based

on your resource categories. Consider the guidance offered in the following
table:

Category of

resource
Access controls

Low No approval required

Moderate Team lead must approve

High Multiple leads must approve and actions must be
recorded

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 16

Contrast these requirements with the capabilities of your source code

management (SCM) and CI/CD systems by asking the following questions and
others:

 Do your SCM or CI/CD systems support necessary access controls and

approval mechanisms?

 Are the controls protected from being subverted if bad actors attack the

underlying infrastructure?

 Is the configuration that defines the controls appropriately secured?

Depending on the capabilities and limitations imposed by your SCM or CI/CD

systems, you can then define your data and application constraints for your
deployment pipelines. Consider the guidance offered in the following table:

Category of

resource
Constraints

Low Deployment pipelines can be used, and developers can self-

approve deployments.

Moderate Deployment pipelines can be used, but a team lead has to

approve every commit and deployment.

High Don't use deployment pipelines. Instead, administrators have

to use a privileged access management system and session
recording.

Maintain resource availability

Using a deployment pipeline to manage resources can impact the availability of
those resources and can introduce new risks:

 Causing outages: A deployment pipeline might push faulty code or

configuration files, causing a previously working system to break, or data to

become unusable.

 Prolonging outages: To fix an outage, you might need to rerun a deployment

pipeline. If the deployment pipeline is broken or unavailable for other reasons,

that could prolong the outage.

A pipeline that can cause or prolong outages poses a denial of service risk: A
bad actor might use the deployment pipeline to intentionally cause an outage.

Create emergency access procedures

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 17

When a deployment pipeline is the only way to deploy or configure an

application or resource, pipeline availability can become critical. In extreme

cases, where a deployment pipeline is the only way to manage a business-
critical application, you might also need to consider the deployment pipeline
business-critical.

Because deployment pipelines are often made from multiple systems and tools,
maintaining a high level of availability can be difficult or uneconomical.

You can reduce the influence of deployment pipelines on availability by

creating emergency access procedures. For example, create an alternative
access path that can be used if the deployment pipeline isn't operational.

Creating an emergency access procedure typically requires most of the
following processes:

 Maintain one of more user accounts with privileged access to relevant Google

Cloud resources.

 Store the credentials of emergency-access user accounts in a safe location, or

use a privileged access management system to broker access.

 Establish a procedure that authorized employees can follow to access the

credentials.

 Audit and review the use of emergency-access user accounts.

Ensure that input artifacts meet your availability demands

Deployment pipelines typically need to download source code from a central

source code repository before they can perform a deployment. If the source
code repository isn't available, running the deployment pipeline is likely to fail.

Many deployment pipelines also depend on third-party artifacts. Such artifacts

might include libraries from sources such as npm, Maven Central, or the NuGet
Gallery, as well as container base images, and .deb, and .rpm packages. If one

of the third-party sources is unavailable, running the deployment pipeline
might fail.

To maintain a certain level of availability, you must ensure that the input

artifacts of your deployment pipeline all meet the same or higher availability
requirements. The following list can help you ensure the availability of input
artifacts:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 18

 Limit the number of sources for input artifacts, particularly third-party sources

 Maintain a cache of input artifacts that deployment pipelines can use if source

systems are unavailable

Treat deployment pipelines and their infrastructure like production systems

Deployment pipelines often serve as the connective tissue between

development, staging, and production environments. Depending on the
environment, they might implement multiple stages:

 In the first stage, the deployment pipeline updates a development environment.

 In the next stage, the deployment pipeline updates a staging environment.

 In the final stage, the deployment pipeline updates the production environment.

When using a deployment pipeline across multiple environments, ensure that

the pipeline meets the availability demands of each environment. Because

production environments typically have the highest availability demands, you
should treat the deployment pipeline and its underlying infrastructure like a

production system. In other words, apply the same access control, security, and

quality standards to the infrastructure running your deployment pipelines as
you do for your production systems.

OVERALL ARCHITECTURE BUILDING AND TESTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 19

	DEPLOYMENT PIPELINE
	Main Stages of a Deployment Pipeline
	Benefits of a Deployment Pipeline
	How to Build a Deployment Pipeline
	What Are Continuous Integration (CI) and Continuous Delivery (CD) Pipelines?
	Deployment Pipeline Tools
	Architecture
	Assess security objectives
	Categorize the sensitivity of your data
	Resources with low confidentiality, but low, moderate, and high integrity
	Resources with medium confidentiality, but low, moderate, and high integrity
	Resources with high confidentiality, but low, moderate, and high integrity

	Categorize applications based on the data that they access
	Categorize cloud resources based on the data and applications they host
	Constrain the use of deployment pipelines

	Maintain resource availability
	Create emergency access procedures
	Ensure that input artifacts meet your availability demands
	Treat deployment pipelines and their infrastructure like production systems

