
 UNIT III NOSQL DATABASES 9
 NoSQL – CAP Theorem – Sharding - Document based – MongoDB Operation:

 Insert, Update, Delete, Query, Indexing, Application, Replication, Sharding–Cassandra:
 Data Model, Key Space, Table Operations, CRUD Operations, CQL Types – HIVE: Data
 types, Database Operations, Partitioning – HiveQL – OrientDB Graph database –
 OrientDB Features

 HIVE
 ● Hive is thought of as “SQL for Hadoop,” although Hive provides a catalog for the

 Hadoop system, as well as a SQL processing layer.
 ● The Hive metadata service contains information about the structure of registered files

 in the HDFS file system.
 ● This metadata effectively “schematizes” these files, providing definitions of column

 names and data types.
 ● The Hive client or server (depending on the Hive configuration) accepts SQL-like

 commands called Hive Query Language (HQL).
 ● These commands are translated into Hadoop jobs that process the query and return the

 results to the user.
 ● Most of the time, Hive creates MapReduce programs that implement query operations

 such as joins, sorts, aggregation, and so on.
 ● Hive is a data warehouse system which is used to analyze structured data. It is built on

 the top of Hadoop. It was developed by Facebook.
 ● Hive provides the functionality of reading, writing, and managing large datasets

 residing in distributed storage. It runs SQL-like queries called HQL (Hive query
 language) which gets internally converted to MapReduce jobs.

 ● Hive supports Data Definition Language (DDL), Data Manipulation Language
 (DML), and User Defined Functions (UDF).

 HIVE ARCHITECTURE

 ● The Hive metastore maps HDFS files to Hive tables
 ● A Hive client or server (depending on the installation mode) accepts HQL commands

 that perform SQL operations on those tables.
 ● Hive translates HQL to Hadoop code (3)—usually MapReduce.
 ● This code operates against the HDFS files (4) and returns query results to Hive (5).
 Features of Hive
 ● Hive is fast and scalable.
 ● It provides SQL-like queries (i.e., HQL) that are implicitly transformed to

 MapReduce or Spark jobs.
 ● It is capable of analyzing large datasets stored in HDFS.
 ● It uses indexing to accelerate queries.
 ● It can operate on compressed data stored in the Hadoop ecosystem.
 ● It supports user-defined functions (UDFs) where user can provide its functionality.

 Data types
 Hive data types are categorized in numeric types, string types, misc types, and

 complex types. A list of Hive data types is given below.
 Integer:

 Type Size Range

 TINYINT 1-byte signed integer -128 to 127

 SMALLINT 2-byte signed integer 32,768 to 32,767

 INT 4-byte signed integer 2,147,483,648 to 2,147,483,647

 BIGINT 8-byte signed integer -9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807

 FLOAT 4-byte Single precision floating point number

 DOUBLE 8-byte Double precision floating point number

 Date/Time Types
 1. TIMESTAMP

 ● It supports traditional UNIX timestamp with optional nanosecond precision.
 ● As Integer numeric type, it is interpreted as UNIX timestamp in seconds.
 ● As Floating point numeric type, it is interpreted as UNIX timestamp in seconds with

 decimal precision.
 ● As string, it follows java.sql.Timestamp format "YYYY-MM-DD

 HH:MM:SS.fffffffff" (9 decimal place precision)
 2. DATES

 ● The Date value is used to specify a particular year, month and day, in the form
 YYYY--MM--DD. However, it didn't provide the time of the day. The range of Date
 type lies between 0000--01--01 to 9999--12--31.

 String Types
 1. STRING

 The string is a sequence of characters. It values can be enclosed within single
 quotes (') or double quotes (").

 2. Varchar
 The varchar is a variable length type whose range lies between 1 and 65535,

 which specifies that the maximum number of characters allowed in the character string.
 3. CHAR

 The char is a fixed-length type whose maximum length is fixed at 255.

 Complex Type

 Type Size Range

 Struct It is similar to C struct or
 an object where fields
 are accessed using the
 "dot" notation.

 struct('James','Roy')

 Map It contains the key-value
 tuples where the fields
 are accessed using array
 notation.

 map('first','James','last','Roy')

 Array It is a collection of similar
 type of values that
 indexable using
 zero-based integers.

 array('James','Roy')

 Database Operations,
 Hive - Create Database

 In Hive, the database is considered as a catalog or namespace of tables. So, we can
 maintain multiple tables within a database where a unique name is assigned to each table.
 Hive also provides a default database with a name default.
 ● Initially, we check the default database provided by Hive. So, to check the list of

 existing databases, follow the below command: -
 hive> create database demo
 hive> show databases;

 Hive - Drop Database
 In this section, we will see various ways to drop the existing database. drop the

 database by using the following command.
 hive> drop database demo;

 Hive - Create Table
 In Hive, we can create a table by using the conventions similar to the SQL. It

 supports a wide range of flexibility where the data files for tables are stored. It provides
 two types of table:
 ● Internal table
 ● External table

 Internal Table
 The internal tables are also called managed tables as the lifecycle of their data is

 controlled by the Hive. By default, these tables are stored in a subdirectory under the
 directory defined by hive. metastore. warehouse.dir (i.e. /user/hive/warehouse). The
 internal tables are not flexible enough to share with other tools like Pig. If we try to drop
 the internal table, Hive deletes both table schema and data. Let's create an internal table
 by using the following command:-

 hive> create table demo.employee (Id int, Name string , Salary float)
 row format delimited
 fields terminated by ',' ;

 Let's see the metadata of the created table by using the following command:-
 hive> describe demo.employee

 External Table
 The external table allows us to create and access a table and a data externally. The

 external keyword is used to specify the external table, whereas the location keyword is
 used to determine the location of loaded data. As the table is external, the data is not
 present in the Hive directory. Therefore, if we try to drop the table, the metadata of the
 table will be deleted, but the data still exists. Let's create an external table using the
 following command: -

 hive> create external table emplist (Id int, Name string , Salary float)
 row format delimited
 fields terminated by ','
 location '/HiveDirectory';

 we can use the following command to retrieve the data: -
 select * from emplist;

 Hive - Load Data
 Once the internal table has been created, the next step is to load the data into it. So,

 in Hive, we can easily load data from any file to the database.
 Let's load the data of the file into the database by using the following command: -

 load data local inpath '/home/codegyani/hive/emp_details' into table
 demo.employee;

 Hive - Drop Table
 Hive facilitates us to drop a table by using the SQL drop table command. Let's

 follow the below steps to drop the table from the database. Let's check the list of existing
 databases by using the following command: -

 hive> show databases;
 hive> use demo;
 hive> show tables;
 hive> drop table new_employee;

 Hive - Alter Table
 In Hive, we can perform modifications in the existing table like changing the table

 name, column name, comments, and table properties. It provides SQL like commands to
 alter the table.

 Rename a Table
 If we want to change the name of an existing table, we can rename that table by

 using the following signature: -
 Alter table old_table_name rename to new_table_name;

 Now, change the name of the table by using the following command: -
 Alter table emp rename to employee_data;

 Adding column
 In Hive, we can add one or more columns in an existing table by using the

 following signature:
 Alter table table_name add columns(column_name datatype);

 Now, add a new column to the table by using the following command: -
 Alter table employee_data add columns (age int);

 Change Column
 In Hive, we can rename a column, change its type and position. Here, we are

 changing the name of the column by using the following signature: -
 Alter table table_name change old_column_name new_column_name datatype;

 Now, change the name of the column by using the following command: -
 Alter table employee_data change name first_name string;

 Delete or Replace Column
 Hive allows us to delete one or more columns by replacing them with the new

 columns. Thus, we cannot drop the column directly. Let's see the existing schema of the
 table.
 alter table employee_data replace columns(id string, first_name string, age int);

 Partitioning
 The partitioning in Hive means dividing the table into some parts based on the

 values of a particular column like date, course, city or country. The advantage of
 partitioning is that since the data is stored in slices, the query response time becomes
 faster.
 The partitioning in Hive can be executed in two ways –
 ● Static partitioning
 ● Dynamic partitioning
 Static Partitioning

 In static or manual partitioning, it is required to pass the values of partitioned
 columns manually while loading the data into the table. Hence, the data file doesn't
 contain the partitioned columns.
 Example of Static Partitioning
 Select the database in which we want to create a table.

 hive> use test;

 Create the table and provide the partitioned columns by using the following command: -
 hive> create table student (id int, name string, age int, institute string)
 partitioned by (course string)
 row format delimited
 fields terminated by ',';

 hive> describe student;

 Load the data into the table and pass the values of partition columns with it by using the
 following command: -

 hive> load data local inpath '/home/codegyani/hive/student_details1' into table
 student partition(course= "java");

 Here, we are partitioning the students of an institute based on courses.
 Load the data of another file into the same table and pass the values of partition
 columns with it by using the following command: -

 hive> load data local inpath '/home/codegyani/hive/student_details2' into table
 student partition(course= "hadoop");

 hive> select * from student;
 Retrieve the data based on partitioned columns by using the following command: -

 hive> select * from student where course="java";

 Dynamic Partitioning
 In dynamic partitioning, the values of partitioned columns exist within the table.

 So, it is not required to pass the values of partitioned columns manually.
 First, select the database in which we want to create a table.

 hive> use show;
 Enable the dynamic partition by using the following commands: -

 hive> set hive.exec.dynamic.partition=true;
 hive> set hive.exec.dynamic.partition.mode=nonstrict;

 Create a dummy table to store the data.
 hive> create table stud_demo(id int, name string, age int, institute string, course

 string) row format delimited fields terminated by ',';

 load the data into the table .
 hive> load data local inpath '/home/codegyani/hive/student_details' into table

 stud_demo;

 Create a partition table by using the following command: -
 hive> create table student_part (id int, name string, age int, institute string)

 partitioned by (course string) row format delimited fields terminated by ',';

 Insert the data of dummy table into the partition table.
 hive> insert into student_part
 partition(course)
 select id, name, age, institute, course
 from stud_demo;

 HiveQL
 Hive is the original SQL on Hadoop. From the very early days of Hadoop, Hive

 represented the most accessible face of Hadoop for many users. Hive Query Language
 (HQL) is a SQL-based language that comes close to SQL-92 entry-level compliance,
 particularly within its SELECT statement. DML statements—such as INSERT, DELETE,
 and UPDATE—are supported in recent versions, though the real purpose of Hive is to
 provide query access to Hadoop data usually ingested via other means. Some SQL-2003
 analytic window functions are also supported. HQL is compiled to MapReduce or—in
 later releases—more sophisticated YARN-based DAG algorithms .

 The following is a simple Hive query:
 0: jdbc:Hive2://> SELECT country_name, COUNT (cust_id)
 0: jdbc:Hive2://> FROM countries co JOIN customers cu
 0: jdbc:Hive2://> ON(cu.country_id=co.country_id)
 0: jdbc:Hive2://> WHERE region = 'Asia'
 0: jdbc:Hive2://> GROUP BY country_name
 0: jdbc:Hive2://> HAVING COUNT (cust_id) > 500;
 2015-10-10 11:38:55 Starting to launch local task to process map join; maximum
 memory = 932184064
 <<Bunch of Hadoop JobTracker output deleted>>
 2015-10-10 11:39:05,928 Stage-2 map = 0%, reduce = 0%
 2015-10-10 11:39:12,246 Stage-2 map = 100%, reduce = 0%, Cumulative CPU 2.28 sec
 2015-10-10 11:39:20,582 Stage-2 map = 100%, reduce = 100%, Cumulative CPU 4.4 sec
 +---------------+------+--+
 | country_name | _c1 |
 +---------------+------+--+
China	712
Japan	624
Singapore	597
 +---------------+------+--+
 3 rows selected (29.014 seconds)

 HQL statements look and operate like SQL statements. There are a few notable
 differences between HQL and commonly used standard SQL, however:
 ● HQL supports a number of table generating functions which can be used to return

 multiple rows from an embedded field that may contain an array of values or a map of
 name:value pairs. The Explode() function returns one row for each element in an
 array or map, while json_tuple() explodes an embedded JSON document.

 ● Hive provides a SORT BY clause that requests output be sorted only within each
 reducer within the MapReduce pipeline. Compared to ORDER BY, this avoids a large
 sort in the final reducer stage, but may not return results in sorted order.

 ● DISTRIBUTE BY controls how mappers distribute output to reducers. Rather than
 distributing values to reducers based on hashing of key values, we can insist that each
 reducer receive contiguous ranges of a specific column. DISTRIBUTE BY can be
 used in conjunction with SORT BY to achieve an overall ordering of results without
 requiring an expensive final sort operation. CLUSTER BY combines the semantics of
 DISTRIBUTE BY and SORT BY operations that specify the same column list. Hive
 can query data in HBase tables and data held in HDFS.

