
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 

INPUTSTREAM AND OUTPUTSTREAMS 

 

 OutputStream

Java application uses an output stream to write data to a destination, it may be a 
file, an array, peripheral device or socket. 
 InputStream

Java application uses an input stream to read data from a source, it may be a file, 
an array, peripheral device or socket. 

 
Working of Java OutputStream and InputStream by the figure given below. 

 

 

OutputStream class 
 

OutputStream class is an abstract class. It is the superclass of all classes 
representing an output stream of bytes. An output stream accepts output bytes and 
sends them to some sink. 

 
Commonly used methods of OutputStream class 

 

 
Method Description 

1) public void write(int)throws 

IOException 

is used to write a byte to the current output 

stream. 

2) public void write(byte[])throws 

IOException 

is used to write an array of byte to the 

current output stream. 

3) public void flush()throws 

IOException 
flushes the current output stream. 

4) public void close()throws 

IOException 
is used to close the current output stream. 

InputStream class 
 

InputStream class is an abstract class. It is the superclass of all classes 
representing an input stream of bytes. 

 
 
 
 
 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
 

 
Commonly used methods of InputStream class 

 

Method Description 

1) public abstract int read() 

throws IOException 

reads the next byte of data from the input stream.It 

returns -1 at the end of file. 

2) public int available() throws 

IOException 

returns an estimate of the number of bytes that can 

be read from the current input stream. 

3) public void close()throws 

IOException 
is used to close the current input stream. 

 
1. FileInputStream and FileOutputStream (File Handling): 

In Java, FileInputStream and FileOutputStream classes are used to read and write data in 
file. In another words, they are used for file handling in java. 

 
 FileOutputStream class

Java FileOutputStream is an output stream for writing data to a file. 
If you have to write primitive values then use FileOutputStream. Instead, for 

character-oriented data, prefer FileWriter. But you can write byte-oriented as well as 
character-oriented data. 

 
 

Method Description 

protected void finalize() It is used to clean up the connection with the file output 

stream. 

void write(byte[] ary) It is used to write ary.length bytes from the byte array to 

the file output stream. 

void write(byte[] ary, int 

off, int len) 

It is used to write len bytes from the byte array starting at 

offset off to the file output stream. 

void write(int b) It is used to write the specified byte to the file output stream. 

void close() It is used to closes the file output stream. 
 

Example of Java FileOutputStream class 

1. import java.io.*; 
2. class Test{ 
3. public static void main(String args[]){ 
4. try{ 
5. FileOutputstream fout=new FileOutputStream("abc.txt"); 
6. String s="java is my favourite language"; 
7. byte b[]=s.getBytes();//converting string into byte array 
8. fout.write(b); 
9. fout.close(); 
 
 

https://www.javatpoint.com/array-in-java


ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
 
 
 
 
10. System.out.println("success..."); 
11. }catch(Exception e){system.out.println(e);} 

12. } 
13.} 

 
Output:success... 

 
 FileInputStream class

Java FileInputStream class obtains input bytes from a file.It is used for reading 
streams of raw bytes such as image data. For reading streams of characters, consider 
using FileReader. 

It should be used to read byte-oriented data for example to read image, audio, 
video etc. 

Method Description 

int available() It is used to return the estimated number of bytes that can 

be read from the input stream. 

int read() It is used to read the byte of data from the input stream. 

int read(byte[] b) It is used to read up to b.length bytes of data from the 

input stream. 

int read(byte[] b, int off, 

int len) 

It is used to read up to len bytes of data from the input 

stream. 

long skip(long x) It is used to skip over and discards x bytes of data from the 

input stream. 

protected void finalize() It is used to ensure that the close method is call when 

there is no more reference to the file input stream. 

void close() It is used to closes the stream. 
 

Example of FileInputStream class 

1. import java.io.*; 
2. class SimpleRead{ 
3. public static void main(String args[]){ 
4. try{ 
5. FileInputStream fin=new FileInputStream("abc.txt"); 
6. int i=0; 
7. while((i=fin.read())!=-1){ 
8. System.out.println((char)i); 
9. } 
10. fin.close(); 
11. }catch(Exception e){system.out.println(e);} 

12. } 
13.} 

https://www.javatpoint.com/java-8-stream


ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
 
 
 

 
Output: java is my favourite language 

 
2. BufferedOutputStream and BufferedInputStream 

 

 BufferedOutputStream class 

Java BufferedOutputStream class uses an internal buffer to store data. It adds 
more efficiency than to write data directly into a stream. So, it makes the performance 
fast. 

 
 

Constructor Description 

BufferedOutputStream(Output 
Stream os) 

It creates the new buffered output stream which is 
used for writing the data to the specified output 
stream. 

BufferedOutputStream(Output 
Stream os, int size) 

It creates the new buffered output stream which is 
used for writing the data to the specified output 
stream with a specified buffer size. 

 
Method Description 

void write(int b) It writes the specified byte to the buffered output stream. 

void write(byte[] b, int off, 

int len) 

It write the bytes from the specified byte-input stream into 

a specified byte array, starting with the given offset 

void flush() It flushes the buffered output stream. 
 

Example of BufferedOutputStream class: 
 

In this example, we are writing the textual information in the BufferedOutputStream 
object which is connected to the FileOutputStream object. The flush() flushes the data of 
one stream and send it into another. It is required if you have connected the one stream 
with another. 

 
1. import java.io.*; 
2. class Test{ 
3. public static void main(String args[])throws Exception{ 
4. FileOutputStream fout=new FileOutputStream("f1.txt"); 
5. BufferedOutputStream bout=new BufferedOutputStream(fout); 
6. String s="Java is my favourite language"; 
7. byte b[]=s.getBytes(); 
8. bout.write(b); 
9. bout.flush(); 
10. bout.close(); 
11. fout.close(); 

https://www.javatpoint.com/array-in-java


ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

12. System.out.println("success"); 

13. } 
14.} 

 
 
 
Output: success... 

 
 BufferedInputStream class 

Java BufferedInputStream class is used to read information from stream. It 
internally uses buffer mechanism to make the performance fast. 

 
Constructor Description 

BufferedInputStream(InputStream 

IS) 

It creates the BufferedInputStream and saves it 

argument, the input stream IS, for later use. 

BufferedInputStream(InputStream 
IS, int size) 

It creates the BufferedInputStream with a 
specified buffer size and saves it argument, the 
input stream IS, for later use. 

 
 

Method Description 

int available() It returns an estimate number of bytes that can be read from 
the input stream without blocking by the next invocation 
method for the input stream. 

int read() It read the next byte of data from the input stream. 

int read(byte[] b, int off, 

int ln) 

It read the bytes from the specified byte-input stream into a 

specified byte array, starting with the given offset. 

void close() It closes the input stream and releases any of the system 

resources associated with the stream. 

void reset() It repositions the stream at a position the mark method was 

last called on this input stream. 

void mark(int readlimit) It sees the general contract of the mark method for the input 

stream. 

long skip(long x) It skips over and discards x bytes of data from the input 

stream. 

boolean markSupported() It tests for the input stream to support the mark and reset 

methods. 
 
 

Example of Java BufferedInputStream 

 
1. import java.io.*; 
2. class SimpleRead{ 
3. public static void main(String args[]){ 
4. try{ 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

5. FileInputStream fin=new FileInputStream("f1.txt"); 
6. BufferedInputStream bin=new BufferedInputStream(fin); 
7. int i; 
 
 
 
 
 
8. while((i=bin.read())!=-1){ 
9. System.out.println((char)i); 

10. } 

11. bin.close(); 
12. fin.close(); 
13. }catch(Exception e){system.out.println(e);} 

14. } 
15.} 

 
Output: Java is my favourite language 

 

3. DataInputStream and DataOutputStream: 
 

 DataInputStream class 

 
DataInputStream class allows the programmer to read primitive data from the 

input source. 
 

Method Description 

int read(byte[] b) It is used to read the number of bytes from the input 

stream. 

int readInt() It is used to read input bytes and return an int value. 

byte readByte() It is used to read and return the one input byte. 

char readChar() It is used to read two input bytes and returns a char value. 

double readDouble() It is used to read eight input bytes and returns a double 

value. 

boolean readBoolean() It is used to read one input byte and return true if byte is 

non zero, false if byte is zero. 

int skipBytes(int x) It is used to skip over x bytes of data from the input 

stream. 

void readFully(byte[] b) It is used to read bytes from the input stream and store 

them into the buffer array. 

void readFully(byte[] b, int 

off, int len) 

It is used to read len bytes from the input stream. 

 
 DataOutputStream class 

The DataOutputStream stream let you write the primitives to an output source. 

https://www.javatpoint.com/array-in-java


ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

Example: 
Following is the example to demonstrate DataInputStream and DataInputStream. This 
example reads 5 lines given in a file test.txt and converts those lines into capital letters 
and finally copies them into another file test1.txt. 
 
 
 
 

 
Method Description 

int size() It is used to return the number of bytes written to the data 

output stream. 

void write(int b) It is used to write the specified byte to the underlying 

output stream. 

void writeChar(int v) It is used to write char to the output stream as a 2-byte 

value. 

void writeChars(String s) It   is   used   to   write string to   the   output   stream   as a 

sequence of characters. 

void writeByte(int v) It is used to write a byte to the output stream as a 1-byte 

value. 

void writeBytes(String s) It is used to write string to the output stream as a 

sequence of bytes. 

void writeInt(int v) It is used to write an int to the output stream 

void writeShort(int v) It is used to write a short to the output stream. 

void writeShort(int v) It is used to write a short to the output stream. 

void writeLong(long v) It is used to write a long to the output stream. 

void flush() It is used to flushes the data output stream. 
 

Test.txt 
this is test 1 , 
this is test 2 , 
this is test 3 , 
this is test 4 , 
this is test 5 , 

 
test.java 

import java.io.*; 
public class Test{ 

public static void main(String args[])throws IOException{ 
DataInputStream d = new DataInputStream(new FileInputStream("test.txt")); 
DataOutputStream out = new DataOutputStream(new FileOutputStream("test1.txt")); 
String count; 
while((count = d.readLine()) != null){ 

String u = count.toUpperCase(); 
System.out.println(u); 
out.writeBytes(u + " ,");} 

https://www.javatpoint.com/java-string


ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

d.close(); 
out.close(); 

}} 

 
 
 
 
 
 
 
Output: 

THIS IS TEST 1 , 
THIS IS TEST 2 , 
THIS IS TEST 3 , 
THIS IS TEST 4 , 
THIS IS TEST 5 , 

4. PrintStream 

The PrintStream class provides methods to write data to another stream. The 
PrintStream class automatically flushes the data so there is no need to call flush() 
method. Moreover, its methods don't throw IOException. 
 
Commonly used methods of PrintStream class: 

 

There are many methods in PrintStream class. Let's see commonly used methods of 
PrintStream class: 

 public void print(boolean b): it prints the specified boolean value. 
 public void print(char c): it prints the specified char value. 
 public void print(char[] c): it prints the specified character array values. 
 public void print(int i): it prints the specified int value. 
 public void print(long l): it prints the specified long value. 
 public void print(float f): it prints the specified float value. 
 public void print(double d): it prints the specified double value. 
 public void print(String s): it prints the specified string value. 
 public void print(Object obj): it prints the specified object value. 
 public void println(boolean b): it prints the specified boolean value and 

terminates the line. 
 public void println(char c): it prints the specified char value and terminates the 

line. 
 public void println(char[] c): it prints the specified character array values and 

terminates the line. 
 public void println(int i): it prints the specified int value and terminates the 

line. 
 public void println(long l): it prints the specified long value and terminates the 

line. 
 public void println(float f): it prints the specified float value and terminates the 

line. 
 public void println(double d): it prints the specified double value and 

terminates the line. 
 public void println(String s): it prints the specified string value and terminates 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

the line./li> 
 public void println(Object obj): it prints the specified object value and 

terminates the line. 
 public void println(): it terminates the line only. 
 public void printf(Object format, Object... args): it writes the formatted string 

to the current stream. 
 public void printf(Locale l, Object format, Object... args): it writes the 

formatted string to the current stream. 
 
 
 
 
 public void format(Object format, Object... args): it writes the formatted string 

to the current stream using specified format. 
 public void format(Locale l, Object format, Object... args): it writes the 

formatted string to the current stream using specified format. 

 
Example of java.io.PrintStream class: 

 
In this example, we are simply printing integer and string values. 

1. import java.io.*; 
2. class PrintStreamTest{ 
3. public static void main(String args[])throws Exception{ 
4. FileOutputStream fout=new FileOutputStream("mfile.txt"); 
5. PrintStream pout=new PrintStream(fout); 
6. pout.println(1900); 
7. pout.println("Hello Java"); 
8. pout.println("Welcome to Java"); 
9. pout.close(); 
10. fout.close(); 

11. } 
12.} 

Example of printf() method of java.io.PrintStream class: 

Example of printing integer value by format specifier: 

1. class PrintStreamTest{ 
2. public static void main(String args[]){ 
3. int a=10; 
4. System.out.printf("%d",a);//Note, out is the object of PrintStream class 
5. } 
6. } 

Output:10 
 

 CHARACTER STREAMS (READER & WRITER): 

Java IO's Reader and Writer work much like the InputStream and OutputStream with the 
exception that Reader and Writer are character based. They are intended for reading 
and writing text. The InputStream and OutputStream are byte based. 

 

Reader class: 

The Java.io.Writer class is a abstract class for writing to character streams. 

http://tutorials.jenkov.com/java-io/inputstream.html
http://tutorials.jenkov.com/java-io/outputstream.html


ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Methods defined by Reader class: 

 

Method Description 

abstract void close() 
This method closes the stream and releases any 

system resources associated with it. 

void mark(int numChars) 
This method marks the present position in the 

stream. 

boolean markSupported() 
This method tells whether this stream supports 

the mark() operation. 

int read() This method reads a single character. 

int read(char buffer[]) This method reads characters into an array. 

abstract int read(char buffer[],int 

offset,int numChars) 

This method reads characters into a portion of 

an array. 

boolean ready() 
This method tells whether this stream is ready 

to be read. 

void reset() This method resets the stream. 

long skip(long numChars) This method skips characters. 

 
Writer class: 

The Java.io.Writer class is a abstract class for writing to character streams 

Methods defined by Writer class: 

Method Description 

Writer append(char ch) 
This method appends the specified 

character to this writer. 

Writer append(CharSequence chars) 
This method appends the specified 

character sequence to this writer. 

Writer append(CharSequence chars, int 

begin, int end) 

This method appends the specified 

character sequence to this writer. 

abstract void close() 
This method loses the stream, flushing it 

first. 

abstract void flush() This method flushes the stream. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

void write(int ch) This method writes a single character. 

void write(char buffer[]) This method writes an array of characters. 

1. Java FileWriter and FileReader (File Handling in java) 

Java FileWriter and FileReader classes are used to write and read data from text 
files. These are character-oriented classes, used for file handling in java. 
Java has suggested not to use the FileInputStream and FileOutputStream classes if you 
have to read and write the textual information. 
 
 
 
 
 

 
 Java FileWriter class 

Java FileWriter class is used to write character-oriented data to the file. 
Constructors of FileWriter class 

Constructor Description 

FileWriter(String file) creates a new file. It gets file name in string. 

FileWriter(File file) creates a new file. It gets file name in File object. 

 
Methods of FileWriter class 

 

Method Description 

1) public void write(String text) writes the string into FileWriter. 

2) public void write(char c) writes the char into FileWriter. 

3) public void write(char[] c) writes char array into FileWriter. 

4) public void flush() flushes the data of FileWriter. 

5) public void close() closes FileWriter. 

 Java FileReader class 

Java FileReader class is used to read data from the file. It returns data in byte 
format like FileInputStream class. 

 
Constructors of FileWriter class 

 

Constructor Description 

FileReader(String file) 
It gets filename in string. It opens the given file in read 

mode. If file doesn't exist, it throws FileNotFoundException. 

 
FileReader(File file) 

It gets filename in file instance. It opens the given file in 
read mode. If file doesn't exist, it throws 
FileNotFoundException. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

Methods of FileReader class 

Method Description 

public int read() 
returns a character in ASCII form. It returns -1 at the end of 

file. 

public void close() closes FileReader. 

 
2. BufferedReader and BufferedWriter classes: 

 BufferedWriter class: 

This can be used for writing character data to the file. 
 
 
 
 
 

Constructors 

BufferedWriter bw = new BufferedWriter(writer w) 
BufferedWriter bw = new BufferedWriter(writer r, int size) 

 
BufferedWriter never communicates directly with the file. It should be communicate 
through some writer object only. 

 
Important methods of BufferedWriter Class 

void write(int ch) thorows IOException 
void write(String s) throws IOException 
void write(char[] ch) throws IOException 
void newLine() for inserting a new line character. 
void flush() 
void close() 

 
 BufferedReader 

BufferedReader class can read character data from the file. 
Constructors 

1. BufferedReader br = new BufferedReader(Reader r) 
2. BufferedReader br = new BufferedReader(Reader r, int buffersize) 
3. BufferedReader never communicates directly with the file. It should 

Communicate through some reader object only. 
 
Important methods of BufferedReader Class 

1. int read() 
2. int read(char [] ch) 
3. String readLine(); - Reads the next line present in the file. If there is no nextline 

this method returns null. 
4. void close() 

 

Example for Java FileWriter and FileReader , BufferedReader and BufferedWriter 
classes: 
import java.io.*; 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

class Simple{ 
public static void main(String args[]){ 
try{ 

FileWriter fw=new FileWriter("d:/archana/abc.txt"); 
BufferedWriter bw = new BufferedWriter(fw); 
bw.write(" Java"); 
bw.close(); 
fw.close(); 
FileReader fr=new FileReader("d:/archana/abc.txt"); 
BufferedReader br = new BufferedReader(fr); 
int i; 
while((i=br.read())!=-1)  
 
 
 
 
 
System.out.print((char)i); 
br.close(); 
fr.close(); 
}catch(Exception e){System.out.println(e);} 
System.out.println("success"); 
} } 

Output 
Java 
success 

 
3. InputStreamReader and OutputStreamWriter classes: 

 

 OutputStreamWriter  

OutputStreamWriter behaves as a bridge to transfer data from character stream 
to byte stream. It uses default charset or we can specify charset for change in 
character stream to byte stream. 
Constructors 

1. OutputStreamWriter(OutputStream out) 
2. OutputStreamWriter(OutputStream out, Charset cs) 
3. OutputStreamWriter(OutputStream out, CharsetEncoder enc) 
4. OutputStreamWriter(OutputStream out, String charsetName) 

Important methods of OutputStreamWriter 

1. void close() 
2. void flush() 
3. String getEncoding() 
4. void write(int c) 
5. void write(String str, int off, int len) 

 
OutputStreamWriterDemo.java 
import java.io.BufferedWriter; 
import java.io.IOException; 
import java.io.OutputStreamWriter; 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

import java.io.Writer; 
public class OutputStreamWriterDemo { 

public static void main(String[] args) { 
String str = "Hello World! \nThis is OutputStreamWriter Code Example.” 
BufferedWriter bw = null; 
try { 
Writer w = new OutputStreamWriter(System.out); 
bw = new BufferedWriter(w); 
bw.write(str); 

} catch (IOException e) { 
e.printStackTrace(); 

}finally {  
 
 
 
 
 
 
try { 

bw.close(); 
} catch (IOException ex) { 

ex.printStackTrace(); 
} 

} 
} 

} 

Output 

Hello World! 
This is OutputStreamWriter Code Example. 

 

 InputStreamReader 

InputStreamReader behaves as bridge from bytes stream to character stream. It 
also uses charset to decode byte stream into character stream. 

 
Constructors 

1. InputStreamReader(InputStream in_strm) 
2. InputStreamReader(InputStream in_strm, Charset cs) 
3. InputStreamReader(InputStream in_strm, CharsetDecoder dec) 
4. InputStreamReader(InputStream in_strm, String charsetName) 

 
Important methods of InputStreamReader 

1. public boolean ready() – tells whether the character stream is ready to be read or 
not. 

2. public void close() – closes InputStreamReader and releases all the Streams 
associated with it. 

3. public int read() – returns single character after reading. 
4. public String getEncoding() – returns the name of the character encoding being 

used by this stream. 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

InputStreamReaderDemo.java 
import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 
public class InputStreamReaderDemo { 

public static void main(String[] args) { 
InputStreamReader isr = new InputStreamReader(System.in); 
BufferedReader br = new BufferedReader(isr); 
int a=0; 
int b=0; 
try { 

System.out.println("Enter a number.."); 
a = Integer.parseInt(br.readLine()); 
System.out.println("Enter another number.."); 
b = Integer.parseInt(br.readLine()); 

} catch (NumberFormatException e)  
 
 
 
 
{ 

e.printStackTrace(); 
} catch (IOException e) { 

e.printStackTrace(); 
} 
System.out.println("you entered "+a+" and "+b); }} 

Output 

Enter a number.. 
10 
Enter another number.. 
14 
you entered 10 and 14 

4. PrintWriter Class 

The Java.io.PrintWriter class prints formatted representations of objects to a text- 
output stream. 
 PrintWriter defines several constructors. The one we will use is shown here: 

PrintWriter(OutputStream outputStream, boolean flushOnNewline) 
Here, outputStream is an object of type OutputStream, and flushOnNewline controls 
whether Java flushes the output stream every time a newline ('\\n') character is output. 
If flushOnNewline is true, flushing automatically takes place. If false, flushing is not 
automatic. 
 PrintWriter supports the print( ) and println( ) methods for all types including 
Object. Thus, you can use these methods in the same way as they have been used with 
System.out. If an argument is not a simple type, the PrintWriter methods call the 
object's toString( ) method and then print the result. 
 To write to the console by using a PrintWriter, specify System.out for the output 
stream and flush     the stream after each newline. For example, this line of code creates 
a PrintWriter that is connected to console output: 

PrintWriter pw = new PrintWriter(System.out, true); 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

The following application illustrates using a PrintWriter to handle console output: 

// Demonstrate PrintWriter 

import java.io.*; 
public class PrintWriterDemo { 
public static void main(String args[]) { 
PrintWriter pw = new PrintWriter(System.out, true); 
pw.println("This is a string"); 
int i = -7; 
pw.println(i); 
double d = 4.5e-7; 
pw.println(d); } } 
The output from this program is shown here: 

This is a string 
-7 
4.5E-7 

 
 
 
 
 
 
 

 

3 Ways to read input from console in Java 

1. Using Buffered Reader Class 
Advantages 

The input is buffered for efficient reading. 
Drawback: 

The wrapping code is hard to remember. 
 

2. Using Scanner Class 
Advantages: 

 Convenient methods for parsing primitives (nextInt(), nextFloat(), …) from the 
tokenized input. 

 Regular expressions can be used to find tokens. 
Drawback: 

The reading methods are not synchronized 
 

3.  Using Console Class 
Advantages: 

 Reading password without echoing the entered characters. 
 Reading methods are synchronized. 
 Format string syntax can be used. 

Drawback: 
Does not work in non-interactive environment (such as in an IDE). 

Java Console Class 

 

4.2: READING AND WRITING CONSOLE 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

The Java Console class is be used to get input from console. It provides methods to read 
texts and passwords. 
If you read password using Console class, it will not be displayed to the user. 
The java.io.Console class is attached with system console internally. 

 
Let's see a simple example to read text from console. 

 
1. String text=System.console().readLine(); 
2. System.out.println("Text is: "+text); 

 
Java Console class declaration 

 

public final class Console extends Object implements Flushable 
 

Java Console class methods 
 
 
 
 
 
 
 
 

 
Method Description 

Reader reader() 
It is used to retrieve the reader object associated 
with the console 

String readLine() 
It is used to read a single line of text from the 

console. 

String readLine(String fmt, 
Object... args) 

It provides a formatted prompt then reads the 
single line of text from the console. 

char[] readPassword() 
It is used to read password that is not being 
displayed on the console. 

char[] readPassword(String fmt, 
Object... args) 

It provides a formatted prompt then reads the 
password that is not being displayed on the console. 

Console format(String fmt, 
Object... args) 

It is used to write a formatted string to the console 
output stream. 

Console printf(String format, 
Object... args) 

It is used to write a string to the console output 
stream. 

PrintWriter writer() 
It is used to retrieve the PrintWriter object 
associated with the console. 

void flush() It is used to flushes the console. 

 
How to get the object of Console 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

System class provides a static method console() that returns the singleton instance of 
Console class. 

public static Console console(){} 

 
Let's see the code to get the instance of Console class. 

 
Console c=System.console(); 

 
Java Console Example 

 

1. import java.io.Console; 
2. class ReadStringTest{ 
3. public static void main(String args[]){ 
4. Console c=System.console(); 
5. System.out.println("Enter your name: "); 
6. String n=c.readLine(); 
7. System.out.println("Welcome "+n); 
8. } 
9. } 

 
 
 
 

Output 

 
Enter your name: abcd 
Welcome abcd 

 
Java Console Example to read password 

1. import java.io.Console; 
2. class ReadPasswordTest{ 
3. public static void main(String args[]){ 
4. Console c=System.console(); 
5. System.out.println("Enter password: "); 
6. char[] ch=c.readPassword(); 
7. String pass=String.valueOf(ch);//converting char array into string 
8. System.out.println("Password is: "+pass); 
9. } 
10.} 

 
Output 

 
Enter password: 
Password is: 123 

 

 

4.3: READING AND WRITING FILES 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

What is File Handling in Java? 

 File handling in Java implies reading from and writing data to a file. 
 The File class from the java.io package, allows us to work with different formats of 

files. 
 In order to use the File class, you need to create an object of the class and specify the 

filename or directory name. 
For example: 

1) // Import the File class 

2) import java.io.File 
3) // Specify the filename 
4) File obj = new File("filename.txt"); 

Java uses the concept of a stream to make I/O operations on a file. 
 

The File class has many useful methods for creating and getting information about files.  
 
For example: 
 
 
 
 
 
 
 
 
 
 
 
 

Method Type Description 

canRead() Boolean Tests whether the file is readable or not 

canWrite() Boolean Tests whether the file is writable or not 

createNewFile() Boolean Creates an empty file 

delete() Boolean Deletes a file 

exists() Boolean Tests whether the file exists 

getName() String Returns the name of the file 

getAbsolutePath() String Returns the absolute pathname of the file 

length() Long Returns the size of the file in bytes 

list() String[] Returns an array of the files in the directory 

mkdir() Boolean Creates a directory 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
 File Operations in Java 

Basically, you can perform four operations on a file. They are as follows: 

1) Create a File 
2) Get File Information 
3) Write To a File 
4) Read from a File 

 
1) Create a File 

To create a file in Java, you can use the createNewFile() method. This method 
returns a boolean value: true if the file was successfully created, and false if 
the file already exists. 

 

Example: 

2) Write To a File 

In the following example, we use the FileWriter class together with its write() 
method to write some text to the file we created in the example above. Note 
that when we are done writing to the file, we should close it with the close() 
method: 

Example: 

import java.io.FileWriter; // Import the FileWriter class 
import java.io.IOException; // Import the IOException class to handle errors 

import java.io.File; 

import java.io.IOException; 

 
public class CreateFile { 

public static void main(String[] args) { 

try { 

File myObj = new File("filename.txt"); 

if (myObj.createNewFile()) { 

System.out.println("File created: " + myObj.getName()); 

} else { 

System.out.println("File already exists."); 

} 

} catch (IOException e) { 

System.out.println("An error occurred."); 

e.printStackTrace(); 

} 

} 

} 

 
The output will be: 

 
File created: filename.txt 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

public class WriteToFile { 
public static void main(String[] args) { 

try { 
FileWriter myWriter = new FileWriter("filename.txt"); 
myWriter.write("Files in Java might be tricky, but it is fun enough!"); 
myWriter.close(); 
System.out.println("Successfully wrote to the file."); 

} catch (IOException e) { 
System.out.println("An error occurred."); 
e.printStackTrace(); 

} 
} 

} 
 
 
 
 

Output: 

Successfully wrote to the file. 

 
3) Read a File 

In the following example, we use the Scanner class to read the contents of the 
text file we created in the previous example: 

Example: 

import java.io.File; // Import the File class 
import java.io.FileNotFoundException; // Import this class to handle errors 
import java.util.Scanner; // Import the Scanner class to read text files 
public class ReadFile { 

public static void main(String[] args) { 
try { 

File myObj = new File("filename.txt"); 
Scanner myReader = new Scanner(myObj); 
while (myReader.hasNextLine()) { 

String data = myReader.nextLine(); 
System.out.println(data); 

} 
myReader.close(); 

} catch (FileNotFoundException e) { 
System.out.println("An error occurred."); 
e.printStackTrace(); 

}}} 

Output: 

Files in Java might be tricky, but it is fun enough! 

4) Get File Information 

To get more information about a file, use any of the File methods: 

Example: 

import java.io.File; // Import the File class 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

public class GetFileInfo { 
public static void main(String[] args) { 

File myObj = new File("filename.txt"); 
if (myObj.exists()) { 

System.out.println("File name: " + myObj.getName()); 
System.out.println("Absolute path: " + myObj.getAbsolutePath()); 
System.out.println("Writeable: " + myObj.canWrite()); 
System.out.println("Readable " + myObj.canRead()); 
System.out.println("File size in bytes " + myObj.length()); 

} else { 
System.out.println("The file does not exist."); 

} 
} 

} 
 
 
 
 

Output: 

File name: filename.txt 
Absolute path: C:\Users\MyName\filename.txt 
Writeable: true 
Readable: true 
File size in bytes: 0 

 
 
 


	INPUTSTREAM AND OUTPUTSTREAMS
	 InputStream
	Working of Java OutputStream and InputStream by the figure given below.
	Commonly used methods of OutputStream class
	InputStream class
	Commonly used methods of InputStream class
	 FileOutputStream class
	Example of Java FileOutputStream class
	 FileInputStream class
	Example of FileInputStream class
	2. BufferedOutputStream and BufferedInputStream
	Example of BufferedOutputStream class:
	 BufferedInputStream class
	Example of Java BufferedInputStream
	3. DataInputStream and DataOutputStream:
	 DataOutputStream class
	test.java
	Output:
	4. PrintStream
	Commonly used methods of PrintStream class:
	Example of java.io.PrintStream class:
	Example of printf() method of java.io.PrintStream class:
	 CHARACTER STREAMS (READER & WRITER):
	Reader class:
	Methods defined by Reader class:
	Methods defined by Writer class:
	1. Java FileWriter and FileReader (File Handling in java)
	 Java FileWriter class
	Methods of FileWriter class
	Constructors of FileWriter class
	Methods of FileReader class
	 BufferedWriter class:
	Constructors
	Important methods of BufferedWriter Class
	 BufferedReader
	Constructors (1)
	Important methods of BufferedReader Class
	Example for Java FileWriter and FileReader , BufferedReader and BufferedWriter classes:
	3. InputStreamReader and OutputStreamWriter classes:
	Constructors (2)
	Important methods of OutputStreamWriter
	OutputStreamWriterDemo.java
	Output
	 InputStreamReader
	Constructors (3)
	Important methods of InputStreamReader
	Output (1)
	4. PrintWriter Class
	// Demonstrate PrintWriter
	The output from this program is shown here:
	3 Ways to read input from console in Java
	Java Console Class
	Java Console class declaration
	How to get the object of Console
	public static Console console(){}
	Console c=System.console();
	Output (2)
	Java Console Example to read password
	Output (3)
	What is File Handling in Java?
	 File Operations in Java
	1) Create a File
	Example:
	Example: (1)
	Output: (1)
	3) Read a File
	Example: (2)
	Output: (2)
	4) Get File Information
	Example: (3)
	Output: (3)

