

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

UNIT I ROLE OF ALGORITHMS IN COMPUTING & COMPLEXITY

ANALYSIS

Algorithms – Algorithms as a Technology – Time and Space complexity of

algorithms – Asymptotic analysis – Average and worst-case analysis – Asymptotic notation

– Importance of efficient algorithms – Program performance measurement – Recurrences:

The Substitution Method – The Recursion – Tree Method – Data structures and algorithms.

IMPORTANCE OF EFFICIENT ALGORITHMS

In computer science, algorithmic efficiency is a characteristic of an algorithm that

is related to the number of computational resources required by the algorithm. An

algorithm’s resource use must be evaluated, and the efficiency of an algorithm may be

assessed based on the use of various resources. For a recurring or continuous process,

algorithmic efficiency is comparable to engineering performance. We want to use as few

resources as possible to maximize efficiency. However, because various resources, such as

time and space complexity, cannot be directly compared, which of the proposed algorithms

is judged to be more efficient typically relies on whatever efficiency metric is considered

more significant.

Efficiency Factors

Efficiency is dependent on two factors:

Space Efficiency

In some cases, the amount of space/memory consumed has to be examined. For

example, in dealing with huge amounts of data or in programming embedded systems,

memory consumed must be analyzed.

Space/memory usage components are:

● Space of Instruction: Compiler, compiler settings, and target machine (CPU), all

have an impact on space of instruction.

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

● Data Space: Data size/dynamically allocated memory, static program variables are all

factors affecting data space.

● Stack Space at Runtime: Compiler, run-time function calls and recursion, local

variables, and arguments all have an impact on stack space at runtime.

Time Efficiency

Obviously, the faster a program/function completes its objective, the better the

algorithm. The actual running time is determined by a number of factors:

● Computer’s Speed: processor (not simply clock speed), I/O, and so on.

● Compiler: The compiler, as well as the compiler parameters.

● Amount of Data: The amount of data, for example, whether to search a lengthy or

a short list.

● Actual Data: The actual data, such as whether the name is first or last in a sequential

search.

Approaches to Time Efficiency

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

There are two ways to assess time complexity:

Asymptotic Categorization:

This employs basic categories to offer a basic notion of performance, which is

also called an order of magnitude. If the algorithms are similar, the data amount is little,

or performance is essential, then the next method can be explored further. Estimation of

running time depends on two things, i.e., Code Analysis and Code Execution, which are

elaborated below:

1. Code Analysis: We can accomplish the following things by analyzing the code:

● Operation Counts: Choose the most frequently performed operation(s) and count

how many times each one is performed.

● Step Counts: Calculate the total number of steps and potentially lines of code that

program executes.

2. Code Execution: We may accomplish the following by executing the code:

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

● Benchmarking: Running the software on a variety of data sets and comparing the

results.

● Description: A report on the number of hours spent in each routine of a program,

which is used to identify and eliminate the program’s hot spots. This perception is

frequently questioned. Although other description modes give data in units other

than time (for example, call counts) and/or at levels of granularity besides per-

routine, the concept is the same.

Three Cases of Time Efficiency

● Worst case

● Average case

● Best case

The worst-case scenario is evaluated since it provides an upper limit on projected

performance. Furthermore, the average scenario is typically more difficult to establish

(it is more data dependent), and it is frequently the same as the worst case. It may be

essential to examine all three situations on some occasions.

