INSAT

INSAT or the *Indian National Satellite System* is a series of multipurpose geostationary satellites launched by ISRO to satisfy the telecommunications, broadcasting, meteorology, and search and rescue operations.

Commissioned in 1983, INSAT is the largest domestic communication system in the Asia Pacific Region. It is a joint venture of the Department of Space, Department of Telecommunications, India Meteorological Department,All India Radio and Doordarshan. The overall coordination and management of INSAT system rests with the Secretary-level INSAT Coordination Committee.

INSAT satellites provide transponders in various bands (C, S, Extended C and Ku) to serve the television and communication needs of India. Some of the satellites also have the Very High Resolution Radiometer (VHRR), CCD cameras for metrological imaging.

The satellites also incorporate transponder(s) for receiving distress alert signals for search and rescue missions in the South Asian and Indian Ocean Region, as ISRO is a member of the Cospas-Sarsat programme.

INSAT System

The Indian National Satellite (INSAT) System Was Commissioned With The Launch Of INSAT-1B In August 1983 (INSAT-1A, The First Satellite Was Launched In April 1982 But Could Not Fulfil The Mission).

INSAT System Ushered In A Revolution In India's Television And Radio Broadcasting, Telecommunications And Meteorological Sectors. It Enabled The Rapid Expansion Of TV And Modern Telecommunication Facilities To Even The Remote Areas And Off-Shore Islands.

Satellites In Service

Of The 24 Satellites Launched In The Course Of The INSAT Program, 10 Are Still In Operation.INSAT-2E

It Is The Last Of The Five Satellites In INSAT-2 Series{Prateek }. It Carries Seventeen C-Band And Lower Extended C-Band Transponders Providing Zonal And Global Coverage With An Effective Isotropic Radiated Power (EIRP) Of 36 Dbw.

It Also Carries A Very High Resolution Radiometer (VHRR) With Imaging Capacity In The Visible (0.55-0.75 μ m), Thermal Infrared (10.5-12.5 μ m) And Water Vapour (5.7-7.1 μ m) Channels And Provides 2x2 Km, 8x8 Km And 8x8 Km Ground Resolution Respectively.

INSAT-3A

The Multipurpose Satellite, INSAT-3A, Was Launched By Ariane In April 2003. It Is Located At 93.5 Degree East Longitude. The Payloads On INSAT-3A Are As Follows:

12 Normal C-Band Transponders (9 Channels Provide Expanded Coverage From Middle East To South East Asia With An EIRP Of 38 Dbw, 3 Channels Provide India Coverage With An EIRP Of 36 Dbw And 6 Extended C -Band Transponders Provide India Coverage With An EIRP Of 36 Dbw).

A CCD Camera Provides 1x1 Km Ground Resolution, In The Visible (0.63 - 0.69 μ m), Near Infrared (0.77-0.86 μ m) And Shortwave Infrared (1.55-1.70 μ m) Bands.

INSAT-3D

Launched In July 2013, INSAT-3D Is Positioned At 82 Degree East Longitude. INSAT-3D Payloads Include Imager, Sounder, Data Relay Transponder And Search & Rescue Transponder. All The Transponders Provide Coverage Over Large Part Of The Indian Ocean Region Covering India, Bangladesh, Bhutan, Maldives, Nepal, Seychelles, Sri Lanka And Tanzania For Rendering Distress Alert Services

INSAT-3E

Launched In September 2003, INSAT-3E Is Positioned At 55 Degree East Longitude And Carries 24 Normal C-Band Transponders Provide An Edge Of Coverage EIRP Of 37 Dbw Over India And 12 Extended C-Band Transponders Provide An Edge Of Coverage EIRP Of 38 Dbw Over India.

KALPANA-1

KALPANA-1 Is An Exclusive Meteorological Satellite Launched By PSLV In September 2002. It Carries Very High Resolution Radiometer And DRT Payloads To Provide Meteorological Services. It Is Located At 74 Degree East Longitude. Its First Name Was METSAT. It Was Later Renamed As KALPANA-1 To Commemorate Kalpana Chawla.

Edusat

Configured For Audio-Visual Medium Employing Digital Interactive Classroom Lessons And Multimedia Content, EDUSAT Was Launched By GSLV In September 2004. Its Transponders And Their Ground Coverage Are Specially Configured To Cater To The Educational Requirements.

GSAT-2

Launched By The Second Flight Of GSLV In May 2003, GSAT-2 Is Located At 48 Degree East Longitude And Carries Four Normal C-Band Transponders To Provide 36 Dbw EIRP With India Coverage, Two K u Band Transponders With 42 Dbw EIRP Over India And An MSS Payload Similar To Those On INSAT-3B And INSAT-3C.

INSAT-4 Series:

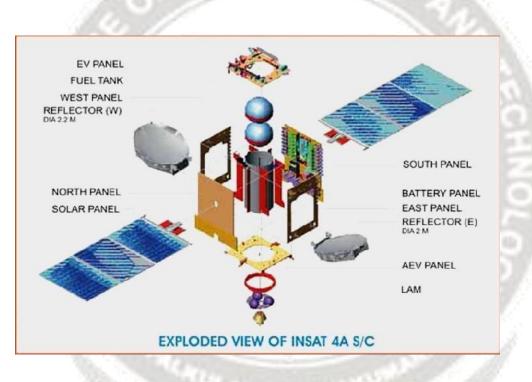
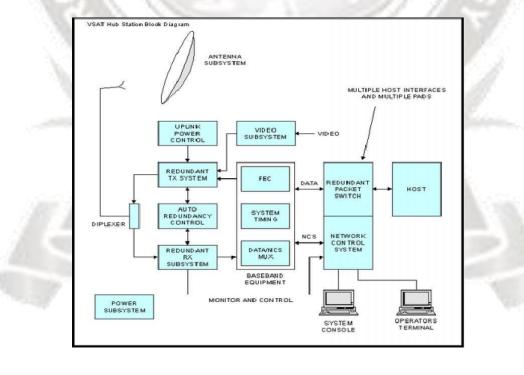


Figure : INSAT 4A

INSAT-4A is positioned at 83 degree East longitude along with INSAT-2E and INSAT-3B. It carries 12 Ku band 36 MHz bandwidth transponders employing 140 W TWTAs to provide an EIRP of 52 dBW at the edge of coverage polygon with footprint covering Indian main land and 12 C -band 36 MHz bandwidth transponders provide an EIRP of 39 dBW at the edge of coverage with expanded radiation patterns encompassing Indian geographical boun dary, area beyond India in southeast and northwest regions.^[8] Tata Sky, a joint venture between the TATA Group and STAR uses INSAT-4A for distributing their DTH service.

- INSAT-4A
- INSAT-4B
- Glitch In INSAT 4B
- China-Stuxnet Connection
- INSAT-4CR
- GSAT-8 / INSAT-4G
- GSAT-12 /GSAT-10


VSAT

VSAT stands for *very small aperture terminal* system. This is the dis- tinguishing feature of a VSAT system, the earth-station antennas being typically less than 2.4 m in diameter (Rana et al., 1990). The trend is toward even smaller dishes, not more than 1.5 m in diameter (Hughes et al., 1993).

EERING

In this sense, the small TVRO terminals for direct broadcast satellites could be labeled as VSATs, but the appellation is usually reserved for private networks, mostly providing two-way communications facilities.

Typical user groups include bank- ing and financial institutions, airline and hotel booking agencies, and large retail stores with geographically dispersed outlets.

Figure 5.4 VSAT Block Diagrams

VSAT network

The basic structure of a VSAT network consists of a hub station which provides a broadcast facility to all the VSATs in the network and the VSATs themselves which access the satellite in some form of multiple- access mode.

The hub station is operated by the service provider, and it may be shared among a number of users, but of course, each user organ- ization has exclusive access to its own VSAT network.

Time division mul- tiplex is the normal downlink mode of transmission from hub to the VSATs, and the transmission can be broadcast for reception by all the VSATs in a network, or address coding can be used to direct messages to selected VSATs.

A form of *demand assigned multiple access* (DAMA) is employed in some systems in which channel capacity is assigned in response to the fluctuating demands of the VSATs in the network.

Most VSAT systems operate in the Ku band, although there are some C- band systems in existence (Rana et al., 1990).

Applications

- ✓ Supermarket shops (tills, ATM machines, stock sale updates and stock ordering).
- ✓ Chemist shops Shoppers Drug Mart Pharmaprix. Broadband direct to the home. e.g. Downloading MP3 audio to audio players.
- ✓ Broadband direct small business, office etc, sharing local use with many PCs.
- ✓ Internet access from on board ship Cruise ships with internet cafes, commercial shipping communications.