

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MATHEMATICS

UNIT II – FOURIER SERIES

2.4 PERIODIC FUNCTION

Periodic Functions

 \triangleright A function f(x) is periodic if there is a positive number T such that for every value of x:

$$f(x+T)=f(x)$$

The smallest such value of T > 0 is called the fundamental period or simply the period.

 \triangleright If we know what the graph looks like in an interval of length T, then we can use replication to sketch the entire graph.

<u>Problem 1:</u> What is the fundamental period of the following function?

Solution:

- a) The period is 3
- b) The period is 6
- c) The period is 4

Period of Trigonometric Functions

Period π :

$$tan(x + \pi) = tan x$$
$$cot(x + \pi) = cot x$$

Period 2π :

$$\sin(x + 2\pi) = \sin x$$

$$\cos(x + 2\pi) = \cos x$$

$$\sec(x + 2\pi) = \sec x$$

$$\csc(x + 2\pi) = \csc x$$

Domain: $-\infty < x < \infty$ Range: $-1 \le y \le 1$

Period: 2π

Domain: $-\infty < x < \infty$

Range: $-1 \le y \le 1$

Period: 2π

 $\cot x =$

 $\csc x =$

tan x

sin x

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range: $-\infty < y < \infty$

Period: π

sin x

 $\frac{}{\cos x}$

 $\cos x$

 $\tan x =$

 $\sec x =$

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$ Range: $y \leq -1$ or $y \geq 1$

Period: 2π

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range: $y \le -1$ or $y \ge 1$

Period: 2π

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Range: $-\infty < y < \infty$

Period: π

<u>Problem 2:</u> Sketch a) $y = \sin x$, b) $y = 2 \sin x$, and What is the period of each function?

c) $y = \sin(2x)$,

Solution:

a) The period is 2π

b) The period is 2π

c) The period is $\boldsymbol{\pi}$

