3.EXCITATION TABLE:

The *characteristic table* is useful for **analysis** and for defining the operation of the Flip-Flop. It specifies the next state (Q_{n+1}) when the inputs and present state are known.

The *excitation or application table* is useful for **design** process. It is used to find the Flip-Flop input conditions that will cause the required transition, when the present state (Q_n) and the next state (Q_{n+1}) are known.

SR Flip- Flop:

Present State	Inputs		Next State	
Qn	S	R	Q _{n+1}	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	х	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	х	
<u>(</u>	Character	ristic Tal	ble	

SR Flip- Flop:

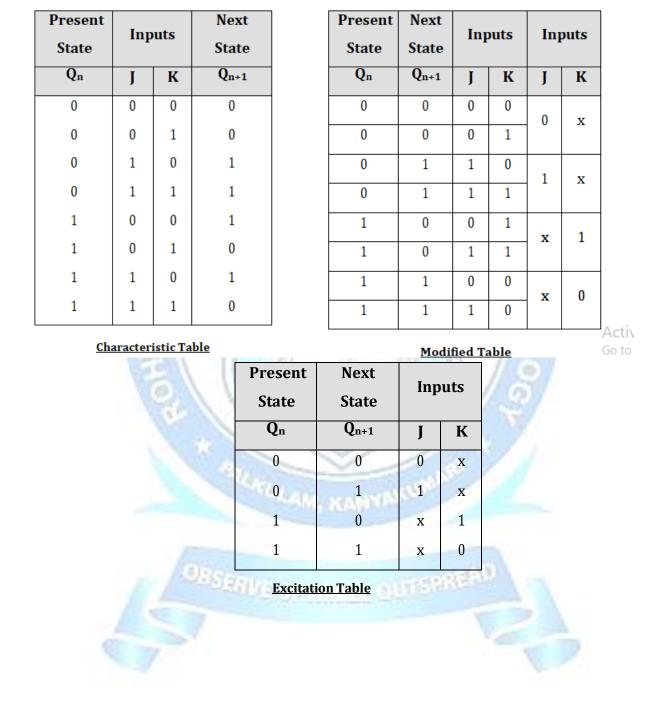
Present State	Next State	Inp	outs	Inț	outs
Qn	Q _{n+1}	S	R	S	R
0	0	0	0	0	x
0	0	0	1	V	А
0	1	1	0	1	0
1	0	0	1	0	1
1	1	0	0	x	0
1	1	1	0	Α	

Modified Table

A

DEVIVISALAKSHI.G-AP/CSE/RCET

Characteristic Table


Present State	Next State	Inp	outs
Qn	\mathbf{Q}_{n+1}	S	R
0.0	0	0	X
0	1	1	0
1	0	0	1
1	1	x	0
Excitation	on Table		77

The above table presents the excitation table for SR Flip-Flop. It consists of present state (Q_n), next state (Q_{n+1}) and a column for each input to show how therequired transition is achieved. There are 4 possible transitions from present state to next state. The required Input conditions for each of the four transitions are derived from the information available in the characteristic table. The symbol 'x' denotes the don't care condition; it does not matter whether the input is 0 or 1.

DEVIVISALAKSHI.G-AP/CSE/RCET

JK Flip-Flop:

DEVIVISALAKSHI.G-AP/CSE/RCET

DFlip-Flop:

Present	Innut	Next
State	Input	State
Qn	D	Q _{n+1}
0	0	0
0	1	1
1	0	0
1	1	1

Characteristic Table

T Flip-Flop:

Present	Input	Next
State	mpac	State
Qn	Т	Q _{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

Characteristic Table

Present State	Next State	Input
Qn	Q _{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

Excitation Table

Present State	Next State	Input
Qn	Q _{n+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

Excitation Table

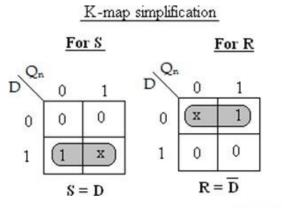
REALIZATION OF ONE FLIP-FLOP USING OTHER FLIP-FLOPS

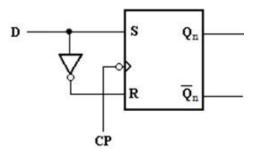
It is possible to convert one Flip-Flop into another Flip-Flop with some additional gates or simply doing some extra connection. The realization of one Flip-Flop using other Flip-Flops is implemented by the use of characteristic tables and excitation tables. Let us see few conversions among Flip-Flops. DEVIVISALAKSHI.G-AP/CSE/RCET

- ✤ SR Flip-Flop to D Flip-Flop
- 蒂 SR Flip-Flop to JK Flip-Flop
- * SR Flip-Flop to T Flip-Flop
- ★ JK Flip-Flop to T Flip-Flop
- ✤ JK Flip-Flop to D Flip-Flop
- * D Flip-Flop to T Flip-Flop
- * T Flip-Flop to D Flip-Flop

SR Flip-Flop to D Flip-Flop:

- Write the characteristic table for required Flip-Flop (D Flip-Flop).
- Write the excitation table for given Flip-Flop (SR Flip-Flop).
- Determine the expression for given Flip-Flop inputs (S & R) by using Kmap.


NEERIN

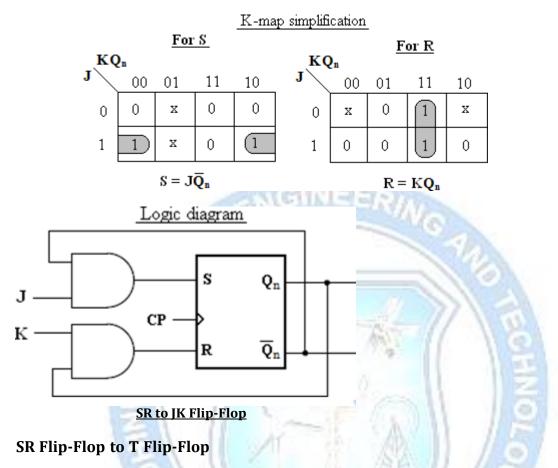

 Draw the Flip-Flop conversion logic diagram to obtain the required flip- flop(D Flip-Flop) by using the above obtained expression.

The excitation table for the above conversion is

Required Flip-Flop (D)			Given Fl (S			
Input	Input Present state Next state			p Inputs		
D	Qn	Q _{n+1}	S	R		
0	0	0	0	X		
0	Seeu 1	0	0	1		
1	0	1	1	0		
1	1	1	х	0		

DEVIVISALAKSHI.G-AP/CSE/RCET

Logic diagram

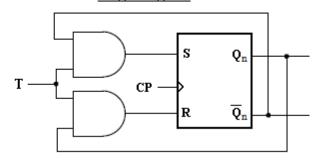

SR to D Flip-Flop

SR Flip-Flop to JK Flip-Flop

The excitation table for the above conversion is, Q_n

Inputs		Present state Next state		s Present state Next state Flip-Flo		o Inputs
J	K	Qn	Q _{n+1}	S	R	
0	0	0	0	0	Х	
0	0	1	AW 1	Х	0	
0	1	0	0	0	Х	
0	1	- 1	0	0	1	
1	0	0	1	1	0	
1	0	Rive 1		х	0	
1	1	0	1	1	0	
1	1	1	0	0	1	

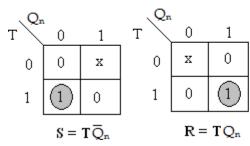
DEVIVISALAKSHI.G-AP/CSE/RCET CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION ROHI



The excitation table for the above conversion is

Input	Present state	Next state	Flip-Flop Inputs	
Т	Qn	Qn+1	S	R
0	0	0	0	х
0	1	1	Х	0
1	0	1	1	0
1086	1	0	0	1

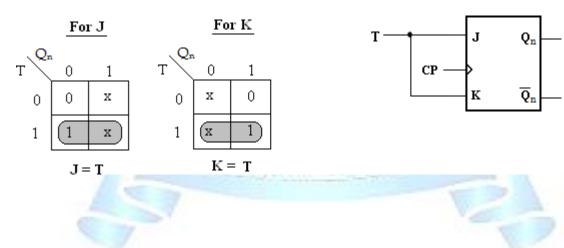
K-map simplification


Logic diagram

For R

<u>SR to T Flip-Flop</u>

JK Flip-Flop to T Flip-Flop


The excitation table for the above conversion is

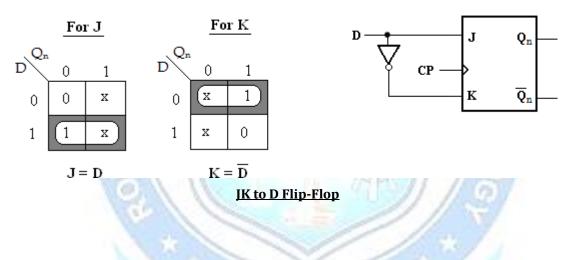
	- CICILI			
Input	Present state	Next state	Flip-Flo	p Inputs
Т	$\mathbf{Q}_{\mathbf{n}}$	Q _{n+1}	J	К
0	0	0	0	Х
0	1	1	X	0
1	0	1 //		X
1	1 2	0	X	1

<u>JK to T Flip-Flop</u>

K-map simplification

Logic diagram

DEVIVISALAKSHI.G-AP/CSE/RCET CS3351-DIGITAL PRINCIPLES AND COMPUTER ARCHITECTURE

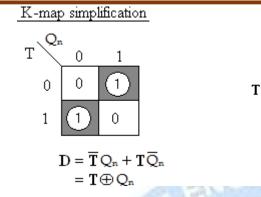

JK Flip-Flop to D Flip-Flop

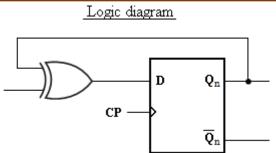
The excitation table for the above conversion is

Input	Present state	Next state	Flip-Flop Inputs	
D	$\mathbf{Q}_{\mathbf{n}}$	\mathbf{Q}_{n+1}	J	К
0	0	0	0	Х
0	1	0	Х	1
1	0	151-1-1	1	Х
1	1	1	X	0

K-map simplification

Logic diagram

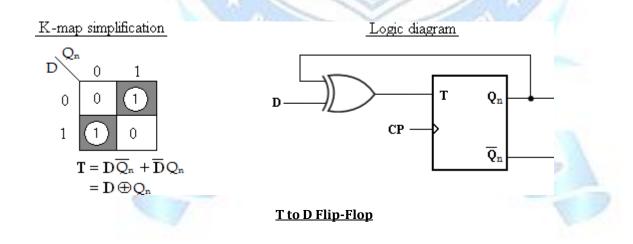

D Flip-Flop to T Flip-Flop


The excitation table for the above conversion

	Input	Present state	Next state	Flip-Flop Input
	Т	Qn	Q _{n+1}	D
	0	0	0	0
. 1	0	1	1	1
0	1	0	1	1
1	1	1	0	0

D to T Flip-Flop

DEVIVISALAKSHI.G-AP/CSE/RCET CS3351-DIGITAL PRINCIPLES AND COMPUTER ARCHITECTURE



T Flip-Flop to D Flip-Flop

The excitation table for the above conversion is

Present state	Next state	Flip-Flop Input
Qn	Q _{n+1}	Т
0	0	0
1	0	1
0	1	1
1	1	0
	0	

DEVIVISALAKSHI.G-AP/CSE/RCET CS3351-DIGITAL PRINCIPLES AND COMPUTER ARCHITECTURE