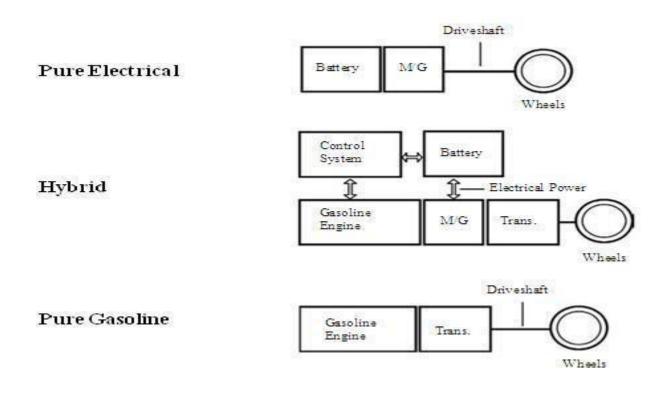
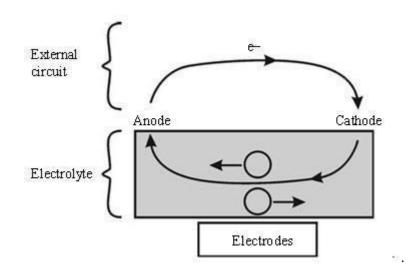
2.1 Hybrid electric vehicle (HEV):

The hybrid electric vehicle combines a gasoline engine with an electric motor. An alternate is a diesel engine and an electric motor.




Figure 1: Components of a hybrid Vehicle that combines a pure gasoline with a pure EV.

As shown in **Figure 1**, a HEV is formed by merging components from a pure electrical vehicle and a pure gasoline vehicle. The Electric Vehicle (EV) has an M/G which allows regenerative braking for an EV; the M/G installed in the HEV enables regenerative braking. For the HEV, the M/G is tucked directly behind the engine. In Honda hybrids, the M/G is connected directly to the engine.

The transmission appears next in line. This arrangement has two torque producers; the M/G in motor mode, M-mode, and the gasoline engine. The battery and M/G are connected electrically. HEVs are a combination of electrical and mechanical components. Three main sources of electricity for hybrids are batteries, FCs, and capacitors. Each device has a low cell voltage, and, hence, requires many cells in series to obtain the voltage demanded by an HEV. Difference in the source of Energy can be explained as: • The FC provides high energy but low power.

- The battery supplies both modest power and energy.
- The capacitor supplies very large power but low energy.

The components of an electrochemical cell include anode, cathode, and electrolyte (shown in fig2). The current flow both internal and external to the cell is used to describe the current loop.

Figure 2: An electrode, a circuit for a cell which is converting chemical energy to electrical energy. The motion of negative charges is clockwise and forms a closed loop through external wires and load and the electrolyte in the cell.

A critical issue for both battery life and safety is the precision control of the Charge/Discharge cycle. Overcharging can be traced as a cause of fire and failure. Applications impose two boundaries or limitations on batteries. The first limit, which is dictated by battery life, is the minimum allowed State of Charge. As a result, not all the installed battery energy can be used. The battery feeds energy to other electrical equipment, which is usually the inverter. This equipment can use a broad range of input voltage, but cannot accept a low voltage. The second limit is the minimum voltage allowed from the battery.

HISTORY OF ELECTRIC VEHICLES:

In 1900, steam technology was advanced. The advantages of *steampowered cars* included high performance in terms of power and speed. However, the disadvantages of steam-powered cars included poor fuel economy and the need to -fire up the boiler || before driving. Feed water was a necessary input for steam engine, therefore could not tolerate the loss of fresh water. Later, Steam condensers were applied to the steam car to solve the feed water problem. However, by that time Gasoline cars had won the marketing battle.

Gasoline cars of 1900 were noisy, dirty, smelly, cantankerous, and unreliable. In comparison, electric cars were comfortable, quiet, clean, and fashionable. Ease of control was also a desirable feature. Lead acid batteries were used in 1900 and are still used in modern cars. Hence lead acid batteries have a long history (since 1881) of use as a viable energy storage device. Golden age of *Electrical vehicle* marked from 1890 to 1924 with peak production of electric vehicles in 1912. However, the range was limited by

energy storage in the battery. After every trip, the battery required recharging. At the 1924 automobile show, no electric cars were on display. This announced the end of the Golden Age of electric-powered cars.

The range of a *gasoline car* was far superior to that of either a steam or an electric car and dominated the automobile market from 1924 to 1960. The gasoline car had one dominant feature; it used gasoline as a fuel. The modern period starts with the oil embargoes and the gasoline shortages during the 1970s which created long lines at gas stations. Engineers recognized that the good features of the gasoline engine could be combined with those of the electric motor to produce a superior car. A marriage of the two yields the hybrid automobile.

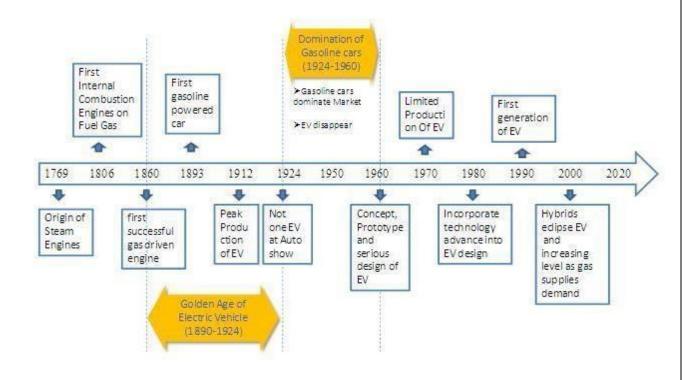


Figure 3: Historical development of automobile and development of interest and activity in the EV from 1890 to present day. Electric Vehicle merged into hybrid electric vehicle.