
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

V

o

e

a

e

n

e

RECURSIVE ENUMERABLE LANGUAGES

Recursive Enumerable (RE) or Type -0 Language

RE languages or type-0 languages are generated by type-0 grammars. An RE language can be

accepted or recognized by Turing machine which means it will enter into final stat for the strings of

language and may or may not enter into rejecting state for the strings which are not part of the

language. It means TM can loop f

languages are also called as Turing r

Recursive Language (REC)

rever for the strings which are not a part of the language. RE

cognizable languages.

A recursive language (subset of RE) can be decided by Turing machine which mea s it will enter into

final state for the strings of language and rejecting state for the strings which are not part of the

language. e.g.; L= {a
n
b

n
c

n
|n>=1} is recursive because we can construct a turing machine which will

move to final state if the string is of the form a
n
b

n
c

n
 else move to non-final stat . So the TM will

always halt in this case. REC languages are also called as Turing decidable languages. The

relationship between RE and REC languages can be shown in Figure 1.

Closure Properties of Recursive L nguages

 Union: If L1 and If L2 are two recursive languages, their union L1∪L2 will also be recursive

because if TM halts for L1 and halts for L2, it will also halt for L1∪L2.

 Concatenation: If L1 and If L2 are two recursive languages, their concatenation L1.L2 will also be

recursive. For Example:

 L1= {a
n
b

n
c

n
|n>=0}

 L2= {d
m
e

m
f

m
|m>=0}

 L3= L1.L2

 = {a
n
b

n
c

n
d

m
 e

m
f

m
|m>=0 and n>=0} is also recursive.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

L1 says n no. of a’s followed by n no. of b’s followed by n no. of c’s. L2 says m no. of d’s followed

by m no. of e’s followed by m no. of f’s. Their concatenation first matches no. of a’s, b’s and c’s and

then matches no. of d’s, e’s and f’s. So it can be decided by TM.

 Kleene Closure: If L1is recursive, its kleene closure L1* will also be recursive. For Example:

L1= {a
n
b

n
c

n
|n>=0}

L1*= { a
n
b

n
c

n
||n>=0}* is also recursive.

 Intersection and complement: If L1 and If L2 are two recursive languages, their intersection L1 ∩

L2 will also be recursive. For Example:

 L1= {a
n
b

n
c

n
dm|n>=0 and m>=0}

 L2= {a
n
b

n
c

n
d

n
|n>=0 and m>=0}

 L3=L1 ∩ L2

 = { a
n
b

n
c

n
d

n
 |n>=0} will be recursive.

L1 says n no. of a’s followed by n no. of b’s followed by n no. of c’s and then any no. of d’s.

L2 says any no. of a’s followed by n no. of b’s followed by n no. of c’s followed by n no. of d’s.

Their intersection says n no. of a’s followed by n no. of b’s followed by n no. of c’s followed by n

no. of d’s. So it can be decided by turing machine, hence recursive.

Similarly, complement of recursive language L1 which is ∑*-L1, will also be recursive.

