ME3491 THEORY OF MACHINES

NOTES

1.8.Displacement, velocity and acceleration analysis

Important Concepts in Velocity Analysis

1. The absolute velocity of any point on a mechanism is the velocity of that point with reference to ground.
2. Relative velocity describes how one point on a mechanism moves relative to another point on the mechanism.
3. The velocity of a point on a moving link relative to the pivot of the link is given by the equation: $\mathrm{V}=\omega \mathrm{r}$, where $=$ angular velocity of the link and $\mathrm{r}=$ distance from pivot.

Acceleration Components

Normal Acceleration: $\mathbf{A}^{\mathrm{n}}=$ Points toward the centre of rotation Tangential Acceleration: $\mathbf{A}^{\mathrm{t}} \quad=\operatorname{In} \mathrm{a}$ direction perpendicular to the link Coriolis Acceleration: $\mathbf{A}^{\mathrm{c}} \quad=$ In a direction perpendicular to the link Sliding Acceleration: $\mathbf{A}^{\mathrm{s}}=$ In the direction of sliding.

A rotating link will produce normal and tangential acceleration components at any point a distance, r, from the rotational pivot of the link. The total acceleration of that point is the vector sum of the components. A slider attached to ground experiences only sliding acceleration.

The total acceleration of a point is the vector sum of all applicable acceleration
components:

$$
\mathbf{A}=\mathbf{A}^{\mathrm{n}}+\mathbf{A}^{\mathrm{t}}+\mathbf{A}^{\mathrm{c}}+\mathbf{A}^{\mathrm{s}}
$$

These vectors and the above equation can be broken into x and y components by applying sines and cosines to the vector diagrams to determine the x and y components of each vector. In this way, the x and y components of the total acceleration can be found.

1.9.Graphical Method, Velocity and Acceleration polygons:

* Graphical velocity analysis:

It is a very short step (using basic trigonometry with sines and cosines) to convert the graphical results into numerical results. The basic steps are these:
4. Set up a velocity reference plane with a point of zero velocity designated.
5. Use the equation, $\mathrm{V}=\omega \mathrm{r}$, to calculate any known linkage velocities.
6. Plot your known linkage velocities on the velocity plot. A linkage that is rotating about ground gives an absolute velocity. This is a vector that originates at the zerovelocity point and runs perpendicular to the link to show the direction of motion. The vector, $\mathbf{V A}$, gives the velocity of point A.
7. Plot all other velocity vector directions. A point on a grounded link (such as point B) will produce an absolute velocity vector passing through the zero-velocity point and perpendicular to the link. A point on a floating link (such as B relative to point A) will produce a relative velocity vector. This vector will be perpendicular to the link AB and pass through the reference point (A) on the velocity diagram.
8. One should be able to form a closed triangle (for a 4-bar) that shows the vector equation: $\mathrm{VB}=\mathrm{VA}+\mathrm{VB} / \mathrm{A}$ where $\mathrm{VB}=$ absolute velocity of point $\mathrm{B}, \mathrm{VA}=$ absolute
velocity of point A, and $V B / A$ is the velocity of point B relative to point A.

Velocity and Acceleration analysis of mechanisms (Graphical Methods):

Velocity and acceleration analysis by vector polygons: Relative velocity and accelerations of particles in a common link, relative velocity and accelerations of coincident particles on separate link, Coriolis component of acceleration.

Velocity and acceleration analysis by complex numbers: Analysis of single slider crank mechanism and four bar mechanism by loop closure equations and complex numbers.

Coincident points, Coriolis Acceleration:

\sqsupset Coriolis Acceleration: $\mathbf{A}^{\mathrm{c}}=2(\mathrm{dr} / \mathrm{dt})$. In a direction perpendicular to the link. A slider attached to ground experiences only sliding acceleration.

Problem: The crank and connecting rod of a theoretical steam engine are 0.5 m and $2 m$ long respectively. The crank makes 180 r.p.m. in the clockwise direction. When it has turned 45° from the inner dead centre position, determine : 1. velocity of piston, 2. angular velocity of connecting rod, 3. velocity of point E on the connecting rod 1.5 m from the gudgeon pin, 4. velocities of rubbing at the pins of the crank shaft, crank and crosshead when the diameters of their pins are 50 mm , 60 mm and 30 mm respectively, 5. position and linear velocity of any point G on the connecting rod which has the least velocity relative to crank shaft.

Solution

Since the crank length $O B=0.5 \mathrm{~m}$, therefore linear velocity of B with respect to O or velocity of B (because O is a fixed point), $v B O=\nu B=\omega B O \times O B=18.852 \times 0.5$ $=9.426 \mathrm{~m} / \mathrm{s}$. .

1.Velocity of piston

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.8 (a). Now the velocity diagram, as shown in Figure a is drawn as discussed below

1. Draw vector ob perpendicular to $B O$, to some suitable scale, to represent the velocity of B with respect to O or velocity of B such that vector $\mathrm{ob}=\mathrm{vBO}=\mathrm{vB}=9.426 \mathrm{~m} / \mathrm{s}$
2. From point b , draw vector bp perpendicular to BP to represent velocity of P with respect to B (i.e. v PB) and from point o , draw vector op parallel to PO to represent velocity of P with respect to O (i.e. v PO or simply v P). The vectors bp and op intersect at point p .

By measurement, we find that velocity of piston $\mathrm{P}, \mathrm{v} \mathrm{P}=$ vector $\mathrm{op}=8.15 \mathrm{~m} / \mathrm{s}$

Figure :Velocity Analysis

2. Angular velocity of connecting rod

From the velocity diagram, we find that the velocity of P with respect to $\mathrm{B}, \mathrm{v} \mathrm{PB}=$ vector bp $=6.8 \mathrm{~m} / \mathrm{s}$.

Since the length of connecting rod PB is 2 m , therefore angular velocity of the connecting rod,

$$
\omega_{\mathrm{PB}}=\frac{v_{\mathrm{PB}}}{P B}=\frac{6.8}{2}=3.4 \mathrm{rad} / \mathrm{s} \text { (Anticlockwise) }
$$

3. Velocity of point E on the connecting rod

The velocity of point E on the connecting rod 1.5 m from the gudgeon pin (i.e. $\mathrm{PE}=1.5 \mathrm{~m}$) is determined by dividing the vector bp at e in the same ratio as E divides PB in Figure below. This is done in the similar way as discussed in Art 7.6. Join oe. The vector oe represents the velocity of E .

By measurement, we find that velocity of point $\mathrm{E}, \mathrm{v} \mathrm{E}=$ vector $\mathrm{oe}=8.5 \mathrm{~m} / \mathrm{s}$

Figure:Space diagram

4. Velocity of rubbing

We know that diameter of crank-shaft pin at $\mathrm{O}, \mathrm{dO}=50 \mathrm{~mm}=0.05 \mathrm{~m}$
Diameter of crank-pin at $\mathrm{B}, \mathrm{dB}=60 \mathrm{~mm}=0.06 \mathrm{~m}$ and diameter of cross-head pin, $\mathrm{dC}=30 \mathrm{~mm}$ $=0.03 \mathrm{~m}$

We know that velocity of rubbing at the pin of crank-shaft $=$ O BO $0.0518 .8522 \mathrm{~d} \times \omega=\times=$ $0.47 \mathrm{~m} / \mathrm{s}$

Velocity of rubbing at the pin of crank

$$
=\frac{d_{\mathrm{B}}}{2}\left(\omega_{\mathrm{BO}}+\omega_{\mathrm{PB}}\right)=\frac{0.06}{2}(18.85+3.4)=0.6675 \mathrm{~m} / \mathrm{s}
$$

and velocity of rubbing at the pin of cross-head

$$
=\frac{d_{\mathrm{C}}}{2} \times \omega_{\mathrm{PB}}=\frac{0.03}{2} \times 3.4=0.051 \mathrm{~m} / \mathrm{s}
$$

5. Position and linear velocity of point G on the connecting rod which has the least velocity relative to crank-shaft

The position of point G on the connecting rod which has the least velocity relative to crank shaft is determined by drawing perpendicular from o to vector bp.

Since the length of og will be the least, therefore the point g represents the required position of G on the connecting rod. By measurement, we find that vector $\mathrm{bg}=5 \mathrm{~m} / \mathrm{s}$

The position of point G on the connecting rod is obtained as follows:

$$
\frac{b g}{b p}=\frac{B G}{B P} \text { or } B G=\frac{b g}{b p} \times B P=\frac{5}{6.8} \times 2=1.47 \mathrm{~m}
$$

