
CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Design Patterns

In software engineering, a design pattern is a general repeatable solution
to a commonly occurring problem in software design. A design pattern isn't a
finished design that can be transformed directly into code. It is a description or
template for how to solve a problem that can be used in many different
situations.

Uses of Design Patterns

Design patterns can speed up the development process by providing tested,
proven development paradigms. Effective software design requires considering
issues that may not become visible until later in the implementation. Reusing
design patterns helps to prevent subtle issues that can cause major problems
and improves code readability for coders and architects familiar with the
patterns.

Often, people only understand how to apply certain software design techniques
to certain problems. These techniques are difficult to apply to a broader range of
problems. Design patterns provide general solutions, documented in a format
that doesn't require specifics tied to a particular problem.

In addition, patterns allow developers to communicate using well-known, well
understood names for software interactions. Common design patterns can be
improved over time, making them more robust than ad-hoc designs.

Creational design patterns

These design patterns are all about class instantiation. This pattern can be
further divided into class-creation patterns and object-creational patterns. While

https://sourcemaking.com/design_patterns/creational_patterns

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

class-creation patterns use inheritance effectively in the instantiation process,
object-creation patterns use delegation effectively to get the job done.

 AbstractFactory
Creates an instance of several families of classes

 Builder
Separates object construction from its representation

 FactoryMethod
Creates an instance of several derived classes

 ObjectPool
Avoid expensive acquisition and release of resources by recycling objects
that are no longer in use

 Prototype
A fully initialized instance to be copied or cloned

 Singleton
A class of which only a single instance can exist

https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/factory_method
https://sourcemaking.com/design_patterns/object_pool
https://sourcemaking.com/design_patterns/prototype
https://sourcemaking.com/design_patterns/singleton

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Structural design patterns

These design patterns are all about Class and Object composition. Structural
class-creation patterns use inheritance to compose interfaces. Structural object-
patterns define ways to compose objects to obtain new functionality

ty.

 Adapter
Match interfaces of different classes

 Bridge
Separates an object’s interface from its implementation

 Composite
A tree structure of simple and composite objects

 Decorator
Add responsibilities to objects dynamically

 Facade
A single class that represents an entire subsystem

https://sourcemaking.com/design_patterns/structural_patterns
https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/bridge
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/facade

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

 Flyweight
A fine-grained instance used for efficient sharing

PrivateClassData
Restricts accessor/mutator access

 Proxy
An object representing another object

Behavioral design patterns

These design patterns are all about Class's objects communication. Behavioral
patterns are those patterns that are most specifically concerned with
communication between objects.

https://sourcemaking.com/design_patterns/flyweight
https://sourcemaking.com/design_patterns/private_class_data
https://sourcemaking.com/design_patterns/proxy
https://sourcemaking.com/design_patterns/behavioral_patterns
https://sourcemaking.com/design_patterns/proxy

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

 Chainofresponsibility
A way of passing a request between a chain of objects

 Command
Encapsulate a command request as an object

 Interpreter
A way to include language elements in a program

 Iterator
Sequentially access the elements of a collection

 Mediator
Defines simplified communication between classes

 Memento
Capture and restore an object's internal state

 NullObject
Designed to act as a default value of an object

 Observer
A way of notifying change to a number of classes

https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/interpreter
https://sourcemaking.com/design_patterns/iterator
https://sourcemaking.com/design_patterns/mediator
https://sourcemaking.com/design_patterns/memento
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/observer

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

State
Alter an object's behavior when its state changes

 Strategy
Encapsulates an algorithm inside a class

 Templatemethod
Defer the exact steps of an algorithm to a subclass

 Visitor
Defines a new operation to a class without change

Types of Design Patterns

There are three types of Design Patterns,
 Creational Design Pattern
 Structural Design Pattern
 Behavioral Design Pattern
Creational Design Pattern
Creational Design Pattern abstract the instantiation process. They help in making a system
independent of how its objects are created, composed and represented.

Importance of Creational Design Patterns:
 A class creational Pattern uses inheritance to vary the class that’s instantiated, whereas an

object creational pattern will delegate instantiation to another object.
 Creational patterns become important as systems evolve to depend more on object

composition than class inheritance. As that happens, emphasis shifts away from hardcoding a

https://sourcemaking.com/design_patterns/state
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/visitor
https://www.geeksforgeeks.org/creational-design-pattern/

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

fixed set of behaviors toward defining a smaller set of fundamental behaviors that can be
composed into any number of more complex ones.

 Creating objects with particular behaviors requires more than simply instantiating a class.

When to ue Creational Design Patterns
 Complex Object Creation: Use creational patterns when the process of creating an object is

complex, involving multiple steps, or requires the configuration of various parameters.
 Promoting Reusability: Creational patterns promote object creation in a way that can be

reused across different parts of the code or even in different projects, enhancing modularity
and maintainability.

 Reducing Coupling: Creational patterns can help reduce the coupling between client code

and the classes being instantiated, making the system more flexible and adaptable to
changes.

 Singleton Requirements: Use the Singleton pattern when exactly one instance of a class is

needed, providing a global point of access to that instance.
 Step-by-Step Construction: Builder pattern of creational design patterns is suitable when

you need to construct a complex object step by step, allowing for the creation of different
representations of the same object.

Advantages of Creational Design Patterns
 Flexibility and Adaptability: Creational patterns make it easier to introduce new types of

objects or change the way objects are created without modifying existing client code. This
enhances the system’s flexibility and adaptability to change.

 Reusability: By providing a standardized way to create objects, creational patterns promote
code reuse across different parts of the application or even in different projects. This leads to
more maintainable and scalable software.

 Centralized Control: Creational patterns, such as Singleton and Factory patterns, allow for

centralized control over the instantiation process. This can be advantageous in managing
resources, enforcing constraints, or ensuring a single point of access.

 Scalability: With creational patterns, it’s easier to scale and extend a system by adding new

types of objects or introducing variations without causing major disruptions to the existing
codebase.

 Promotion of Good Design Practices: Creational patterns often encourage adherence to
good design principles such as abstraction, encapsulation, and the separation of concerns.
This leads to cleaner, more maintainable code.

Disadvantages of Creational Design Patterns
 Increased Complexity: Introducing creational patterns can sometimes lead to increased

complexity in the codebase, especially when dealing with a large number of classes,
interfaces, and relationships.

 Overhead: Using certain creational patterns, such as the Abstract Factory or Prototype
pattern, may introduce overhead due to the creation of a large number of classes and
interfaces.

 Dependency on Patterns: Over-reliance on creational patterns can make the codebase
dependent on a specific pattern, making it challenging to adapt to changes or switch to
alternative solutions.

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

 Readability and Understanding: The use of certain creational patterns might make the code
less readable and harder to understand, especially for developers who are not familiar with the
specific pattern being employed.

Structural Design Patterns
Structural patterns are concerned with how classes and objects are composed to form larger
structures. Structural class patterns use inheritance to compose interfaces or implementations.

Importance of Structural Design Patterns
 This pattern is particularly useful for making independently developed class libraries work

together.
 Structural object patterns describe ways to compose objects to realize new functionality.
 It added flexibility of object composition comesfrom the ability to change the composition at

run-time, which is impossible with static class composition.

When to ue Structural Design Patterns
 Adapting to Interfaces: Use structural patterns like the Adapter pattern when you need to

make existing classes work with others without modifying their source code. This is particularly
useful when integrating with third-party libraries or legacy code.

 Organizing Object Relationships: Structural patterns such as the Decorator pattern are
useful when you need to add new functionalities to objects by composing them in a flexible
and reusable way, avoiding the need for subclassing.

 Simplifying Complex Systems: When dealing with complex systems, structural patterns like

the Facade pattern can be used to provide a simplified and unified interface to a set of
interfaces in a subsystem.

 Managing Object Lifecycle: The Proxy pattern is helpful when you need to control access to

an object, either for security purposes, to delay object creation, or to manage the object’s
lifecycle.

 Hierarchical Class Structures: The Composite pattern is suitable when dealing with
hierarchical class structures where clients need to treat individual objects and compositions of
objects uniformly.

Advantages of Structural Design Patterns
 Flexibility and Adaptability: Structural patterns enhance flexibility by allowing objects to be

composed in various ways. This makes it easier to adapt to changing requirements without
modifying existing code.

 Code Reusability: These patterns promote code reuse by providing a standardized way to
compose objects. Components can be reused in different contexts, reducing redundancy and
improving maintainability.

 Improved Scalability: As systems grow in complexity, structural patterns provide a scalable
way to organize and manage the relationships between classes and objects. This supports the
growth of the system without causing a significant increase in complexity.

 Simplified Integration: Structural patterns, such as the Adapter pattern, facilitate the
integration of existing components or third-party libraries by providing a standardized interface.
This makes it easier to incorporate new functionalities into an existing system.

https://www.geeksforgeeks.org/structural-design-patterns/

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

 Easier Maintenance: By promoting modularity and encapsulation, structural patterns
contribute to easier maintenance. Changes to one part of the system are less likely to affect
other parts, reducing the risk of unintended consequences.

 Solves Recurring Design Problems: These patterns encapsulate solutions to recurring
design problems. By applying proven solutions, developers can focus on higher-level design
challenges unique to their specific applications.

Disadvantages of Structural Design Patterns
 Complexity: Introducing structural patterns can sometimes lead to increased complexity in the

codebase, especially when multiple patterns are used or when dealing with a large number of
classes and interfaces.

 Overhead: Some structural patterns, such as the Composite pattern, may introduce overhead
due to the additional layers of abstraction and complexity introduced to manage hierarchies of
objects.

 Maintenance Challenges: Changes to the structure of classes or relationships between
objects may become more challenging when structural patterns are heavily relied upon.
Modifying the structure may require updates to multiple components.

 Limited Applicability: Not all structural patterns are universally applicable. The suitability of a

pattern depends on the specific requirements of the system, and using a pattern in the wrong
context may lead to unnecessary complexity.

Behavioral Design Pattern
Behavioral patterns are concerned with algorithms and the assignment of responsibilities
between objects. Behavioral patterns describe not just patterns of objects or classes but also the
patterns of communication between them.

Importance of Behavioral Design Pattern
 These patterns characterize complex control flow that’s difficult to follow at run-time.
 They shift focus away from flow of control to let you concentratejust on the way objects are

interconnected.
 Behavioral class patterns use inheritance to distribute behavior between classes.

When to ue Behavioral Design Patterns
 Communication Between Objects: Use behavioral patterns when you want to define how

objects communicate, collaborate, and interact with each other in a flexible and reusable way.
 Encapsulation of Behavior: Apply behavioral patterns to encapsulate algorithms, strategies,

or behaviors, allowing them to vary independently from the objects that use them. This
promotes code reusability and maintainability.

 Dynamic Behavior Changes: Use behavioral patterns when you need to allow for dynamic

changes in an object’s behavior at runtime without altering its code. This is particularly
relevant for systems that require flexibility in behavior.

 State-Dependent Behavior: State pattern is suitable when an object’s behavior depends on

its internal state, and the object needs to change its behavior dynamically as its state changes.
 Interactions Between Objects: Behavioral patterns are valuable when you want to model

and manage interactions between objects in a way that is clear, modular, and easy to
understand.

https://www.geeksforgeeks.org/behavioral-design-patterns/

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Advantages of Behavioral Design Patterns
Flexibility and Adaptability:
 Behavioral patterns enhance flexibility by allowing objects to interact in a more dynamic and

adaptable way. This makes it easier to modify or extend the behavior of a system without
altering existing code.

 Code Reusability:

 Behavioral patterns promote code reusability by encapsulating algorithms, strategies, or
behaviors in separate objects. This allows the same behavior to be reused across different
parts of the system.

 Separation of Concerns:

 These patterns contribute to the separation of concerns by dividing the responsibilities of
different classes, making the codebase more modular and easier to understand.

 Encapsulation of Algorithms:

 Behavioral patterns encapsulate algorithms, strategies, or behaviors in standalone objects,
making it possible to modify or extend the behavior without affecting the client code.

 Ease of Maintenance:
 With well-defined roles and responsibilities for objects, behavioral patterns contribute to easier

maintenance. Changes to the behavior can be localized, reducing the impact on the rest of the
code.

Disadvantages of Behavioral Design Patterns
 Increased Complexity: Introducing behavioral patterns can sometimes lead to increased

complexity in the codebase, especially when multiple patterns are used or when there is an
excessive use of design patterns in general.

 Over-Engineering: There is a risk of over-engineering when applying behavioral patterns
where simpler solutions would suffice. Overuse of patterns may result in code that is more
complex than necessary.

 Limited Applicability: Not all behavioral patterns are universally applicable. The suitability of
a pattern depends on the specific requirements of the system, and using a pattern in the
wrong context may lead to unnecessary complexity.

 Code Readability: In certain cases, applying behavioral patterns may make the code less
readable and harder to understand, especially for developers who are not familiar with the
specific pattern being employed.

 Scalability Concerns: As the complexity of a system increases, the scalability of certain
behavioral patterns may become a concern. For example, the Observer pattern may become
less efficient with a large number of observers.

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Model-view-controller (MVC)

Definition

The MVC pattern in Software Engineering Architecture is defined as an application

being separated into three logical components: Model, View and Controller.

Model

This component in the architecture will represent all data-related logic. This includes

defining how the data is formed. In other words, this holds the definition for many of

the types that we use in the application. In many cases, the model here refers to the

type of data that we are dealing with in the application. This component also notifies

its dependents about data changes.

View

Contains all User interface (UI) logic in the application. This component of the

application encapsulates mainly the UI related logic which includes things that the end

user will manipulate like dropdown buttons and web pages etc.

Controller

Controllers exist as a layer between Model and View components to process all the

business logic arising from user input. It is responsible to handle inputs from the View

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

components, manipulate data using the models from the Model component and then

finally interact with the view components again to render the final output to the end

user. Responsible for manipulating the data.

Why MVC

The MVC pattern today is widely used for many applications and remain a popular

choice. This is due to a few key reasons

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Faster Development Time

Given the separation of the applications into the three distinct areas, this means that

more developers are able to work on each part separately. e.g if a developer works on

the model, he is not directly blocking another developer from building up the view

component of the application and thus allows teams to speed up development purely

due to the nature of the architecture itself.

Greater Testability

Each component being separated from each other means that developers are able to

test each one separately and in isolation. This is made easier due to the clear

separation of concerns that is applied in this architecture pattern. e.g a Model can be

tested easily without the view component.

Easy extension of views/modification

Any changes in view component will usually not affect the model component, hence

developers using this pattern can easily extend and add new views to the application to

display the data from model in different ways. Thus, modifications are easier to be

isolated to a single component instead of affecting the entire application

MVC in Real World application

Web applications

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Many web applications today run primarily on MVC architecture. In particular,

ASP.NET MVC framework offers and MVC pattern as one of the development model.

This framework provides developers with a MVC abstraction built on top of ASP.NEXT

and thus provide a large set of added functionality.
Sample code from ASP.NET documentation

An example of a controller action in ASP.NET MVC framework.

Another example framework for web that uses MVC is Sails. Sails is a nodeJs

framework that provides added functionality. A sails app comes preconfigured with the

MVC structure predefined and developers can just use it right out of the box.

	Design Patterns
	Uses of Design Patterns
	Creational design patterns
	Structural design patterns
	Behavioral design patterns
	Types of Design Patterns
	Creational Design Pattern
	Importance of Creational Design Patterns:
	When to ue Creational Design Patterns
	Advantages of Creational Design Patterns
	Disadvantages of Creational Design Patterns

	Structural Design Patterns
	Importance of Structural Design Patterns
	When to ue Structural Design Patterns
	Advantages of Structural Design Patterns
	Disadvantages of Structural Design Patterns

	Behavioral Design Pattern
	Importance of Behavioral Design Pattern
	When to ue Behavioral Design Patterns
	Advantages of Behavioral Design Patterns
	Disadvantages of Behavioral Design Patterns

	Model-view-controller (MVC)
	Definition
	Why MVC
	MVC in Real World application

