
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 HASHING

 Hashing in the data structure is a technique of mapping a large chunk of data into

small tables using a hashing function. It is also known as the message digest

function. It is a technique that uniquely identifies a specific item from a collection

of similar items.

 It uses hash tables to store the data in an array format. Each value in the array has

been assigned a unique index number. Hash tables use a technique to generate

these unique index numbers for each value stored in an array format. This

technique is called the hash technique.

 You only need to find the index of the desired item, rather than finding the data.

With indexing, you can quickly scan the entire list and retrieve the item you wish.

Indexing also helps in inserting operations when you need to insert data at a

specific location. No matter how big or small the table is, you can update and

retrieve data within seconds.

 The hash table is basically the array of elements, and the hash techniques of search

are performed on a part of the item i.e. key. Each key has been mapped to a

number, the range remains from 0 to table size 1

 Types of hashing in data structure is a two-step process.

o The hash function converts the item into a small integer or hash value. This

integer is used as an index to store the original data.

o It stores the data in a hash table. You can use a hash key to locate data quickly.

 Examples

 In schools, the teacher assigns a unique roll number to each student. Later, the

teacher uses that roll number to retrieve information about that student.

 A library has an infinite number of books. The librarian assigns a unique number

to each book. This unique number helps in identifying the position of the books

on the bookshelf.

 HASH FUNCTION

 The hash function in a data structure maps the arbitrary size of data to fixed-sized

data. It returns the following values: a small integer value (also known as hash

value), hash codes, and hash sums. The hashing techniques in the data structure

are very interesting, such as:

CS3353 C PROGRAMMING AND DATA STRUCTURES

o hash = hashfunc(key)

o index = hash % array_size

 The hash function must satisfy the following requirements:

o A good hash function is easy to compute.

o A good hash function never gets stuck in clustering and distributes keys

evenly across the hash table.

o A good hash function avoids collision when two elements or items get

assigned to the same hash value.

 The three characteristics of the hash function in the data structure are:

o Collision free

o Property to be hidden

o Puzzle friendly

 Hash Table

 Hashing in data structure uses hash tables to store the key-value pairs. The hash

table then uses the hash function to generate an index. Hashing uses this unique

index to perform insert, update, and search operations.

 It can be defined as a bucket where the data are stored in an array format. These

data have their own index value. If the index values are known then the process

of accessing the data is quicker.

 How does Hashing in Data Structure Works?

 In hashing, the hashing function maps strings or numbers to a small integer value.

Hash tables retrieve the item from the list using a hashing function.

 The objective of hashing technique is to distribute the data evenly across an array.

Hashing assigns all the elements a unique key. The hash table uses this key to

CS3353 C PROGRAMMING AND DATA STRUCTURES

access the data in the list.

 Hash table stores the data in a key-value pair. The key acts as an input to the

hashing function. Hashing function then generates a unique index number for each

value stored.

 The index number keeps the value that corresponds to that key. The hash function

returns a small integer value as an output. The output of the hashing function is

called the hash value.

 Let us understand hashing in a data structure with an example. Imagine you need

to store some items (arranged in a key-value pair) inside a hash table with 30 cells.

The values are: (3,21) (1,72) (40,36) (5,30) (11,44) (15,33) (18,12) (16,80) (38,99)

 The hash table will look like the following:

 The process of taking any size of data and then converting that into smaller data

value which can be named as hash value. This hash value can be used in an

index accessible in hash table. This process define hashing in data structure.

 SEPARATE CHAINING

 Separate Chaining is the collision resolution technique that is implemented using

linked list. When two or more elements are hash to the same location, these

elements are represented into a singly linked list like a chain. Since this method

uses extra memory to resolve the collision, therefore, it is also known as open

CS3353 C PROGRAMMING AND DATA STRUCTURES

hashing.

 Separate Chaining Hash Table

 In separate chaining, each slot of the hash table is a linked list. We will insert the

element into a specific linked list to store it in the hash table. If there is any

collision i.e. if more than one element after calculating the hashed value mapped

to the same key then we will store those elements in the same linked list. Given

below is the representation of the separate chaining hash table.

 Example for Separate Chaining

 Let's understand with the help of examples. Given below is the hash

function: h(key) = key % table size

 In a hash table with size 7, keys 42 and 38 would get 0 and 3 as hash indices

respectively.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 If we insert a new element 52 , that would also go to the fourth index as 52%7 is

3.

 The lookup cost will be scanning all the entries of the selected linked list for the

required key. If the keys are uniformly distributed, then the average lookup cost

will be an average number of keys per linked list.

 How to Avoid Collision in Separate Chaining Method

 Separate chaining method handles the collison by creating a linked list to the

occupied buckets. So far we only looked at a simple hash function where collision

is imminent.

 It is important to choose a good hash function in order to minimize the number of

collisions so that all the key values are evenly distributed in the hash table.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Some characterstics of good hash function are:

 Minimize collisions

 Be easy and quick to compute

 key values inserted evenly in the hash table

 Have a high load factor for a given set of keys

 Practice Problem Based on Separate Chaining

 Let's take an example to understand the concept more clearly. Suppose we have

the following hash function, and we have to insert certain elements in the hash

table by using separate chaining as the collision resolution technique.

 Hash function = key % 6 Elements = 24, 75, 65, 81, 42, and 63.

 Step1: First we will draw the empty hash table which will have possible range

of hash values from 0 to 5 according to the hash function provided.

 Step 2: Now we will insert all the keys in the hash table one by one. First key to

be inserted is 24. It will map to bucket number 0 which is calculated by using hash

function 24%6=0.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Step 3: Now the next key that is need to be inserted is 75. It will map to the bucket

number 3 because 75%6=3. So insert it to bucket number 3.

 Step 4: The next key is 65. It will map to bucket number 5 because 65%6=5. So,

insert it to bucket number 5.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Step 5: Now the next key is 81. Its bucket number will be 81%6=3. But bucket 3

is already occupied by key 75. So separate chaining method will handles the

collision by creating a linked list to bucket 3.

 Step 6: Now the next key is 42. Its bucket number will be 42%6=0. But bucket 0

is already occupied by key 24. So separate chaining method will again handles the

collision by creating a linked list to bucket 0.

 Step 7: Now the last key to be inserted is 63. It will map to the bucket number

63%6=3. Since bucket 3 is already occupied, so collision occurs but separate

chaining method will handle the collision by creating a linked list to bucket 3.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 In this way the separate chaining method is used as the collision resolution

technique.

 Advantages and Disadvantages of Separate Chaining

Advantages

 Separate Chaining is one of the simplest methods to implement and understand.

 We can add any number of elements to the chain.

 It is frequently used when we don't know about the number of elements and the

number of keys that can be inserted or deleted.

Disadvantages

 The keys in the hash table are not evenly distributed.

 Some amount of wastage of space occurs.

 The complexity of searching becomes O(n) in the worst case when the chain

becomes long.

 OPEN ADDRESSING

 The open addressing is another technique for collision resolution. Unlike chaining,

it does not insert elements to some other data-structures. It inserts the data into the

hash table itself. The size of the hash table should be larger than the number of

keys.

 There are three different popular methods for open addressing techniques. These

methods are −

 Linear Probing

 Quadratic Probing

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Double Hashing

 LINEAR PROBING

 This is a simple method, sequentially tries the new location until an empty location

is found in the table.

 For example: inserting the keys {79, 28, 39, 68, 89} into closed hash table by

using same function and collision resolution technique as mentioned before and

the table size is 10 (for easy undestanding we are not using prime number for

table size).Here array or hash table is considered circular because when the last

slot reached an empty location not found then the search proceeds to the first

location of the array.

 The hash function is hi(X)=(Hash(X)+F(i)) % TableSize for i = 0, 1, 2, 3,...etc.

4.10.1 Solution

A Closed Hash Table using Linear Probing

Key Hash Function h(X) Index Collision Alt Index

79 h0(79) = (Hash (79) +F(0)) %10

= ((79%10) +0) %10 = 9

9

28 h0(28) = (Hash (28) +F(0)) %10

= ((28%10) +0) %10 = 8

8

39 h0(39) = (Hash (39) +F(0)) %10

= ((39%10) +0) %10 = 9

9 First collision

occurs

CS3353 C PROGRAMMING AND DATA STRUCTURES

h1(39) = (Hash (39) +F(0)) %10

= ((39%10) +1) %10 = 0

0 0

68 h0(68) 8 First

 = (Hash(68)+F(0))%10 collision

 = ((68%10)+0)%10 = 8 occurs

 h1(68) 9 Again

 = (Hash(68)+F(1))%10 collision

 = ((68%10)+1)%10 = 9 occurs

 h2(68)

= (Hash(68)+F(2))%10

= ((68%10)+2)%10 = 0

0 Again

collision

occurs

h3(68)

= (Hash(68)+F(3))%10

= ((68%10)+3)%10 = 1

1 1

89 h0(89) 9 collision

 = (Hash(89)+F(0))%10 Occurs

 = ((89%10)+0)%10 = 9

 h1(89) 0 Again

 = (Hash(89)+F(1))%10 collision

 = ((89%10)+1)%10 = 0 occurs

 h2(89) 1 Again

 = (Hash(89)+F(2))%10 collision

 = ((89%10)+2)%10 = 1 occurs

 h3(89) 2 2

 = (Hash(89)+F(3))%10

 = ((89%10)+3)%10 = 2

CS3353 C PROGRAMMING AND DATA STRUCTURES

 QUADTRATIC PROBING

 Quadratic probing is an open addressing method for resolving collision in the hash

table. This method is used to eliminate the primary clustering problem of linear

probing.

 This technique works by considering of original hash index and adding successive

value of an arbitrary quadratic polynomial until the empty location is found. In

linear probing, we would use H+0, H+1, H+2, H+3,.....H+K hash function

sequence.

 Instead of using this sequence, the quadratic probing would use another sequence

is that H+12, H+22, H+32,....H+K2. Therefore, the hash function for quadratic

probing is

 Let us examine the linear probing with the same example

Key Hash Function h(X) Index Collision Alt Index

79 h0(79)

= (Hash (79) + F(0)2) % 10

= ((79 % 10) + 0) % 10

9

CS3353 C PROGRAMMING AND DATA STRUCTURES

28 h0(28)

= (Hash (28) + F(0)2) % 10

= ((28 % 10) + 0) % 10

8

39 h0(39) 9 The first

 = (Hash (39) + F(0)2) % 10

= ((39 % 10) + 0) % 10

 collision

occurs

 h1(39) 0 0

 = (Hash(39) + F(1)2) % 10

 = ((39 % 10) + 1) % 10

68 h0(68)

= (Hash (68) + F(0)2) % 10

= ((68 % 10) + 0) % 10

8 The

collision

occurs

 h1(68) 9 Again

= (Hash (68) + F(1)2) % 10

= ((68 % 10) + 1) % 10

 collision

occurs

h2(68) 2 2

= (Hash(68) + F(2)2) % 10

= ((68 % 10) + 4) % 10

89 h0(89) 9 The

 = (Hash(89) + F(0)2) % 10 collision

 = ((89 % 10) + 0) % 10 occurs

 h1(89) 0 Again

 = (Hash(89) + F(1)2) % 10

= ((89 % 10) + 1) % 10

 collision

occurs

 h2(89) 3 3

 = (Hash(89) + F(2)2) % 10

 = ((89 % 10) + 4) % 10

 Although, the quadratic probing eliminates the primary clustering, it still has the

CS3353 C PROGRAMMING AND DATA STRUCTURES

problem.

 When two keys hash to the same location, they will probe to the same alternative

location. This may cause secondary clustering. In order to avoid this secondary

clustering, double hashing method is created where we use extra multiplications

and divisions

 DOUBLE HASHING

 Double Hashing uses 2 hash functions and hence called double hashing. The first

hash function determines the initial location to locate the key and the second hash

function is to determine the size of the jumps in the probe sequence.

 Double Hashing - Hash Function 1 or First Hash Function – formula

 hi = (Hash(X) + F(i)) % Table

Size were

 F(i) = i * hash2(X)

 X is the Key or the Number for which the hashing is done

 i is the ith time that hashing is done for the same value. Hashing is repeated

only when collision occurs

 Table size is the size of the table in which hashing is done

 This F(i) will generate the sequence such as hash2(X), 2 * hash2(X) and so on.

 Double Hashing - Hash Function 2 or Second Hash Function – formula

 Second hash function is used to resolve collision in hashing We use second hash

function as

o hash2(X) = R - (X mod R)

 where

 R is the prime number which is slightly smaller than the Table Size.

 X is the Key or the Number for which the hashing is done

 Double Hashing Example - Closed Hash Table

 Let us consider the same example in which we choose R = 7.

CS3353 C PROGRAMMING AND DATA STRUCTURES

A Closed Hash Table using Double Hashing

Key Hash Function h(X) Index Collision At Index

79 h0(79)=(Hash(79)+F(0))% 10

= ((79 % 10) + 0) % 10 = 9

9

28 h0(28)=(Hash(28)+F(0))% 10

= ((28 % 10) + 0) % 10 = 8

8

39 h0(39)=(Hash(39)+F(0))% 10 9 First collision

 = ((39 % 10) + 0) % 10 = 9 occurs

 h1(39)=(Hash(39)+F(1))%10 2 2

 =((39% 10)+1(7-(39 % 7))) % 10

 = (9 + 3) % 10 =12 % 10=2

68 h0(68) = (Hash (68) + F(0)) % 10 8 collision

 = ((68 % 10) + 0) % 10 = 8 occurs

 h1(68) =(Hash(68) +F(1)) % 10 0 0

 = ((68 % 10) +1(7-(68 % 7))) % 10

 = (8 + 2) % 10 =10 % 10=0

89 h0(89) =(Hash(89) + F(0)) % 10 9 Collision

CS3353 C PROGRAMMING AND DATA STRUCTURES

 = ((89 % 10) + 0) % 10 = 9 occurs

 h1(89) = (Hash(89) + F(1)) % 10 0 Again

 = ((89 % 10) + 1(7-(89 % 7))) % 10 collision

 = (9 + 2) % 10 =10 % 10 = 0 occurs

 h2(89) = (Hash(89) + F(2)) % 10 3 3

 = ((89 % 10) + 2(7-(89 % 7))) % 10

 = (9 + 4) % 10=13 % 10 =3

 RE-HASHING

 Rehashing is the process of re-calculating the hashcode of already stored entries

(Key-Value pairs), to move them to another bigger size hashmap when the

threshold is reached/crossed.

 Why Rehashing is done?

 Rehashing is done because whenever a new key value pair is inserted into map,

the load factor increases and due to which complexity also increases. And if

complexity increases our HashMap will not have constant O(1) time complexity.

 Hence rehashing is done to distribute the items across the hashmap as to reduce

both laod factor and complexity, So that get() and put() have constant time

complexity of O(1).

 After rehashing is done existing items may fall in the same bucket or different

bucket.

 What is Load factor in HashMap?

 Load factor in HashMap is basically a measure that decides when exactly to

increase the size of the HashMap to maintain the same time complexity of O(1).

 Load factor is defined as (m/n) where n is the total size of the hash table and m

is the preferred number of entries which can be inserted before an increment in

the size of the underlying data structure is required.

 If you are going to store really large no of elements in the hashmap then it is

always good to create HashMap with sufficient capacity upfront as rehashing will

not be done frequently, this is more efficient than letting it to perform automatic

rehashing.

CS3353 C PROGRAMMING AND DATA STRUCTURES

 How Rehashing is Done?

 Let’s try to understand the above with an example: Say we had HashTable with

Initial Capacity of 4. We need to insert 4 Keys: 100, 101, 102, 103

 Hash function used was division method: Key % ArraySize

 Element1: Hash(100) = 100%6 = 4, so Element1 will be rehashed and will be

stored at 5th Index in this newly resized HashTable, instead of 1st Index as on

previous HashTable.

 Element2: Hash(101) = 101%6 = 5, so Element2 will be rehashed and will be

stored at 6th Index in this newly resized HashTable, instead of 2nd Index as on

previous HashTable.

 Element3: Hash(102) = 102%6 = 6, so Element3 will be rehashed and will be

stored at 4th Index in this newly resized HashTable, instead of 3rd Index as on

previous HashTable.

 Since the Load Balance now is 3/6 = 0.5, we can still insert the 4th element now.

 Element4: Hash(103) = 103%6 = 1, so Element4 will be stored at 1st Index in this

newly resized HashTable.

 Rehashing Steps

 For each addition of a new entry to the map, check the current load factor.

 If it’s greater than its pre-defined value, then Rehash.

 For Rehash, make a new array of double the previous size and make it the new

bucket array.

 Then traverse to each element in the old bucketArray and insert them back so as

to insert it into the new larger bucket array.

CS3353 C PROGRAMMING AND DATA STRUCTURES

 If you are going to store a really large number of elements in the HashTable then

it is always good to create a HashTable with sufficient capacity upfront as this is

more efficient than letting it perform automatic rehashing

	HASHING
	Examples

	HASH FUNCTION
	How does Hashing in Data Structure Works?

	SEPARATE CHAINING
	Separate Chaining Hash Table
	Example for Separate Chaining
	How to Avoid Collision in Separate Chaining Method
	Practice Problem Based on Separate Chaining
	Advantages and Disadvantages of Separate Chaining
	Advantages
	Disadvantages

	OPEN ADDRESSING
	LINEAR PROBING
	4.10.1 Solution

	QUADTRATIC PROBING
	DOUBLE HASHING
	Double Hashing - Hash Function 1 or First Hash Function – formula
	Double Hashing - Hash Function 2 or Second Hash Function – formula
	Double Hashing Example - Closed Hash Table
	A Closed Hash Table using Double Hashing

	RE-HASHING
	Why Rehashing is done?
	What is Load factor in HashMap?
	How Rehashing is Done?
	Rehashing Steps

