Central limit theorem

Statement

Let x_1, x_2, \ldots, x_n are n independent identically distributed random variables with

same mean μ and standard deviation σ and if $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, then the variate z =

 $\frac{\overline{x}-\mu}{\sigma/\sqrt{n}}$ has a distribution that approaches the standard normal distribution an $n \rightarrow$

 ∞ provided the MGF of x_i exist.

Proof:

MGF of z about origin is $M_X(t) = E(e^{tz})$

$$= E\left[e^{t\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right)}\right]$$

$$= E\left[e^{\frac{\sqrt{nt}}{\sigma}(\bar{X}-\mu)}\right]$$

$$OBSERVE OP[[\frac{X\sqrt{nt}ZE\mu\sqrt{nt}}{\sigma}]]$$

$$= E\left[e^{\frac{\mu\sqrt{nt}}{\sigma}}E\left[e^{\frac{X\sqrt{nt}}{\sigma}}\right]\right]$$

$$= e^{-\frac{\mu\sqrt{n}t}{\sigma}} E\left[e^{\frac{\sqrt{n}t}{\sigma}\frac{1}{n}(x_1+x_2+\ldots+x_n)}\right]$$

$$= e^{-\frac{\mu\sqrt{n}t}{\sigma}} E\left(e^{\frac{tx_1}{\sigma\sqrt{n}}}\right) E\left(e^{\frac{tx_2}{\sigma\sqrt{n}}}\right) \dots E\left(e^{\frac{tx_n}{\sigma\sqrt{n}}}\right)$$

$$= e^{-\frac{\mu\sqrt{n}t}{\sigma}} \left\{ M_X\left(\frac{t}{\sigma\sqrt{n}}\right) \right\}^n$$
Taking log on both sides
$$log M_z(t) = log e^{-\frac{\mu\sqrt{n}t}{\sigma}} + log \left\{ M_X\left(\frac{t}{\sigma\sqrt{n}}\right) \right\}^n$$

$$= \frac{-\mu t\sqrt{n}}{\sigma} + n log M_X\left(\frac{t}{\sigma\sqrt{n}}\right)$$

$$= \frac{-\mu t\sqrt{n}}{\sigma} + n log E\left(e^{\frac{tx}{\sigma\sqrt{n}}}\right)$$

$$= \frac{-\mu t\sqrt{n}}{\sigma} + n log \left[E\left(1 + \frac{tx}{\sigma\sqrt{n}} + \frac{t}{2!}\frac{t^2x^2}{\sigma^2n} + \dots \right) \right]$$

$$= \frac{-\mu t\sqrt{n}}{\sigma} + n log \left[E\left(1 + \frac{tx}{\sigma\sqrt{n}} + \frac{t}{2!}\frac{t^2x^2}{\sigma^2n} + \dots \right) \right]$$

$$= \frac{-\mu t\sqrt{n}}{\sigma} + n log \left[1 + \frac{tx}{\sigma\sqrt{n}} E(x) + \frac{t}{2!}\frac{t^2x^2}{\sigma^2n} E(x^2) + \dots \right]$$

$$= \frac{-\mu t \sqrt{n}}{\sigma} + n \left[\left(\frac{tx}{\sigma \sqrt{n}} \mu_1' + \frac{1}{2!} \frac{t^2 x^2}{\sigma^2 n} \mu_2' + \dots \right) - \frac{1}{2} \left(\frac{tx}{\sigma \sqrt{n}} \mu_1' + \frac{1}{2!} \frac{t^2 x^2}{\sigma^2 n} \mu_2' + \dots \right) \right]$$

$$\frac{1}{2!} \frac{t^2 x^2}{\sigma^2 n} \mu_2' + \dots \Big)^2 + \dots \Big]$$

$$= \frac{-\mu t \sqrt{n}}{\sigma} + \frac{{\mu_1}' t \sqrt{n}}{\sigma} + \frac{{\mu_2}' t^2}{2!\sigma} + \dots - \frac{({\mu_1}')^2 t^2}{2\sigma^2} + \text{terms containing "n" in the denominator}$$

Put
$$\mu = {\mu_1}'$$

$$= \frac{-\mu_1' t \sqrt{n}}{\sigma} + \frac{\mu_1' t \sqrt{n}}{\sigma} + \frac{\mu_2' t^2}{2! \sigma} + \dots - \frac{(\mu_1')^2 t^2}{2\sigma^2} + \text{ terms containing "n" in the denominator}$$

MANYF

 $=\frac{t^2}{2\sigma^2}(\mu_2'-(\mu_1')^2) + \text{terms containing "n" in the denominator}$

$$=\frac{t^2}{2\sigma^2}\sigma^2$$
 + terms containing "*n*" in the denominator

$$log M_z(t) = \frac{t^2}{2}$$
 + terms containing "n" in the denominator

Letting
$$n \to \infty$$
, $log M_z(t) = \frac{t^2}{2}$
OBSERVE OPTIMIZE OUTSPREAD

$$\Rightarrow M_z(t) = e^{\frac{t^2}{2}} = \text{MGF of } N(0, 1)$$

Hence *z* follows standard normal distribution as $n \to \infty$

Standard Normal Distribution

Let $z = \frac{X-\mu}{\sigma}$, z follows normal distribution with mean 0 and variance 1, then z follows standard normal distribution.

Problems on Central limit theorem

1. If $X_1, X_2, ..., X_n$ are Poisson variables with parameter $\lambda = 2$, use central limit

theorem to estimate $P(120 < S_n < 160)$ where $S_n = X_1 + X_2 + \ldots + X_n$ and n =

KANYAKU

BSERVE OPTIMIZE OUTSPREAD

75

Solution:

To find mean and variance

Given mean = 2

Variance = 2

(For Poisson distribution Mean = variance = λ

To find $n\mu$ and $n\sigma^2$

 $n\mu = 75 \times 2 = 150$

 $n\sigma^2 = 75 \times 2 = 150$

 $\sigma \sqrt{n} = \sqrt{150}$

Application of central limit theorem

 $S_n \sim N(n\mu, \sigma\sqrt{n})$ $\sim N(150, \sqrt{150})$ GINEERINGA To find $P(120 < S_n < 160)$ Let $z = \frac{S_n - n\mu}{\sigma \sqrt{n}}$ $=\frac{S_n-150}{\sqrt{150}}$ If $S_n = 120$ $z = \frac{120 - 150}{\sqrt{150}} = -2.45$ PALKULAM, KANYAKUNA If $S_n = 160$ $z = \frac{160-150}{\sqrt{150}} = 0.85$ $P(120 < S_n < 160) = P\left(\frac{S_n - 150}{\sqrt{150}} \le z \le \frac{S_n + 150}{\sqrt{150}}\right)$ $= P(-2.45 \le z \le 0.85)$

 $= P(-2.45 \le z \le 0) + P(0 \le z \le 0.85)$

= 0.4927 + 0.2939 = 0.7866

2. Let X_1, X_2, \ldots, X_n be independent identically distributed random variable

variables with mean = 2 and variance = $\frac{1}{4}$. Find $P(192 < X_1 + X_2 + ... + X_n < .$

210)
Solution:
To find mean and variance
Given mean = 2
Variance =
$$\frac{1}{4}$$
, $n = 4$
To find $n\mu$ and $n\sigma^2$
 $n\mu = 100 \times 2 = 200$
 $n\sigma^2 = 100 \times 1/4 = 25$
 $\sigma\sqrt{n} = 5$

$$S_n \sim N(n\mu, \sigma\sqrt{n}) \sim N(200, 5)$$

To find $P(192 < S_n < 210)$

3. The resistors r_1 , r_2 , r_3 and r_4 are independent random variables and is uniform in the interval (450, 550). Using the central limit theorem, find $P(1900 < r_1 + r_2 + r_3 + r_4 < 2100)$

Solution:

To find mean and variance

A random variable X is said to have uniform distribution on the interval (a, b) if its probability density function is given by

$$f(x) = \frac{1}{b-a}, a < x < b$$
Mean = $\frac{a+b}{2}$, Variance = $\frac{(b-a)^2}{12}$
Mean = $\frac{450+550}{2}$ = 500
Variance = $\frac{(550-450)^2}{12}$ = 833.33, $n = 4$
To find $n\mu$ and $n\sigma^2$

$$n\mu = 4 \times 500 = 2000$$
 $n\sigma^2 = 4 \times 833.33 = 25$
 $\sigma\sqrt{n} = 2\sqrt{833.33} = 57.73$
Application of central limit theorem

 $S_n \sim N(n\mu, \sigma\sqrt{n})$

 $\sim N(200, 57.73)$

To find $P(1900 < S_n < 2100)$

Let $z = \frac{S_n - n\mu}{\sigma \sqrt{n}}$ GINEERINGA $=\frac{S_n-2000}{57.73}$ If $S_n = 1900$ $z = \frac{1900 - 2000}{57.73} = -1.73$ If $S_n = 2100$ $z = \frac{2100 - 2000}{57.73} = 1.73$ $P(1900 < S_n < 2100) = P\left(\frac{S_n - 2000}{57.73} \le z \le \frac{S_n + 2000}{57.73}\right)$ $= P(-1.73 \le z \le 1.73)$ $= P(-1.73 \le z \le 0) + P(0 \le z \le 1.73)$ ERVE OPTIMIZE OUTSPRE $= 2 \times P(0 \le z \le 1.73)$ $= 2 \times 0.4582 = 0.9164$

4. If x_i , i = 1, 2, ..., 50 are independent random variables each having a Poisson distribution with parameter $\lambda = 0.03$ and $S_n = X_1 + X_2 + \ldots + X_n$ evaluate $P(S_n \ge 3)$

Solution:

$$\sigma\sqrt{n} = \sqrt{1.5}$$

Application of central limit theorem

$$S_n \sim N(n\mu, \sigma\sqrt{n})$$

$$\sim N(1.5, \sqrt{1.5})$$

To find $P(S_n \ge 3)$

5. A coin is tossed 300 times. What is the probability that heads will appear more than 140 times and less than 150 times.

Solution:

OBSERVE OPTIMIZE OUTSPREAD

To find mean and variance

Let P be the probability of getting head in a single trial.

 $p = \frac{1}{2}$, $q = 1 - \frac{1}{2} = \frac{1}{2}$

Here n = 300

To find *np* and *npq*

mean =
$$np = 300 \times \frac{1}{2} = 150$$

Variance = $npp = 300 \times \frac{1}{2} \times \frac{1}{2} = 75$
To find $P(140 < S_n < 150)$
Let $z = \frac{X-\mu}{\sigma}$
 $= \frac{X-150}{\sqrt{75}}$
If $X = 140$
 $z = \frac{140-150}{\sqrt{75}} = -1.15$
If $X = 150$
 $z = \frac{150-150}{\sqrt{75}} = 0$
 $P(140 < X < 50) = P\left(\frac{X-150}{\sqrt{75}} \le z \le \frac{X+150}{\sqrt{75}}\right)$
 $= P(-1.15 \le z \le 0)$

$$= P(0 \le z \le 1.15)$$

= 0.3749

OBSERVE OPTIMIZE OUTSPREAD