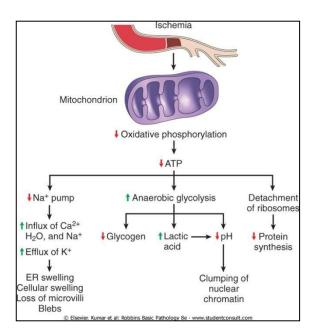
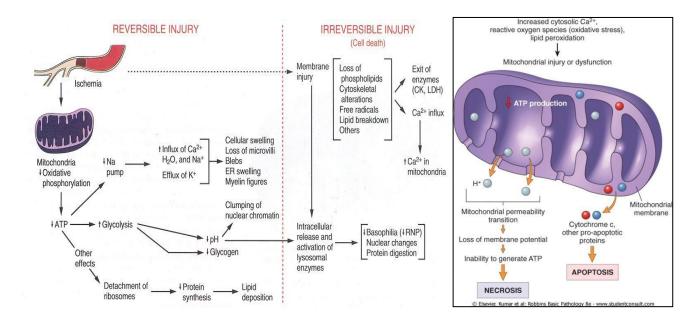

Cell Injury

- 4 interrelated cell systems especially susceptible to injury
 - Membranes (cellular and organellar)
 - Aerobic system
 - o Protein synthesis (enzymes, structural proteins, etc)
 - o Genetic apparatus (DNA, RNA, etc)

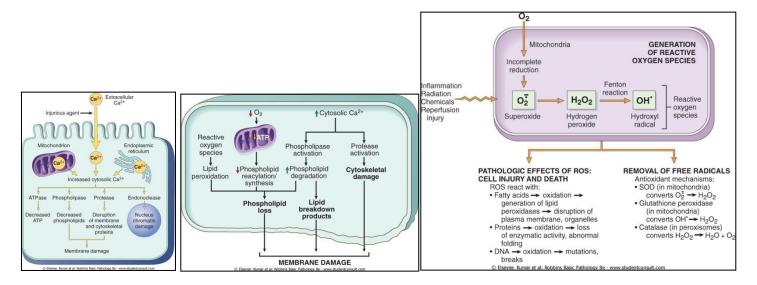
Mechanisms for cell injury


- Loss of Ca⁺⁺ homeostasis
- o Membrane permeability defects
- o ATP depletion
- o O₂ and O₂ derived free radicals


Causes of Cell Injury

- Hypoxia (ischemia block in blood flow, hypoxemia decreased partial pressure of oxygen in blood, anemia – decreased oxygen carrying capacity)
 - Block in ventilation(foreign body), oxygen diffusion (pneumonia, pulmonary edema), perfusion(pulmonary embolus), decreased cardiac output
- Free radical damage
- o Chemicals, drugs, toxins
- Infections
- Physical agents

- o Immunologic reactions
- o Genetics
- o Nutritional imbalance



- Oxygen tension falls disrupts oxidative phosphorylation decreased ATP
 - ↓ Na⁺/K⁺ ATPase increased intracellular Na⁺ swelling
 - ↓ ATP-dependent Ca⁺⁺ pumps increased cytosolic Ca⁺⁺
 - Depletion of glycogen from altered metabolism
 - o Decreased pH from lactic acid accumulation
 - Decreased protein synthesis from ribosome detachment from RER
- End result cytoskeletal disruption with loss of microvilli, bleb formation, etc

Excess cytoplasmic $Ca^{++} \Box$ denatures proteins, poisons mitochondria, inhibits cellular enzymes

o Therefore, membrane damage and Ca⁺⁺ homeostasis is critical

 Injured membranes allow intracellular components to enter the serum and can be measured

Free radical injury (acetaminophen – Tylenol overdose)

- Lipid peroxidation damage to cellular and organellar membranes
- Protein crosslinking/fragmentation from oxidative modification of amino acids and proteins
- o DNA damage from free radical reaction with thymine

Types

- o Chemical
- o Inflammation/microbial killing
- Irradiation
- o Oxygen
- o Age-related

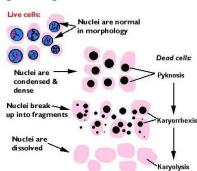
Free Radical Derivations

- o Superoxide O_2^{\bullet} produced by cellular oxidases
- o H_2O_2 produced by superoxide mutase or catalase
- \circ OH $^{\bullet}$ produced by ionizing radiation, H_2O_2 and O_2^{\bullet} -, and fenton reaction
- Morphological changes follow functional changes

Reversible injury

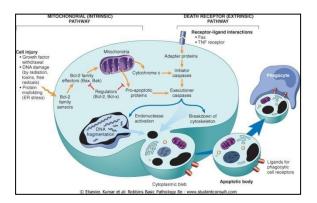
- Light microscope cell swelling, fatty change
- Ultrastructural changes cell membrane alterations, swelling and small deposits of mitochondria, RER and attached ribosome swelling

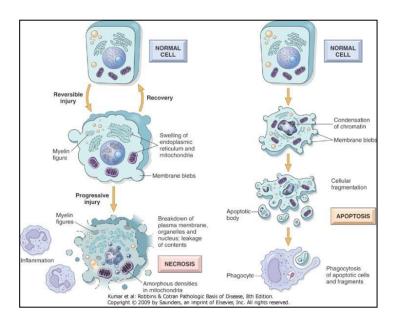
Irreversible injury


- Light microscope
- Loss of RNA (which is basophilic) increased cytoplasmic eosinophilia (pink colour)
- Cytoplasmic vacuolization
- Nuclear chromatin clumping
- Ultrastructural
- Membrane breakage
- Large amorphous densities in mitochondria
- Nuclear changes
- Pyknosis nuclear shrinkage, increased basophilia (blue colour)
- Karyorrhexis fragmentation of pyknotic nucleus
- Karyolysis fading of basophilia of chromatin

Types of Cell Death

- o Apoptosis usually regulated, may be pathogenic, has a role in embryogenesis
- Necrosis always pathologic, many causes


Apoptosis


- Programmed cell death in embryogenesis
- Hormone
 dependent
 involution of adult
 organs(thymus)

ROHINI COLLEGE OF ENGINEERING

- Cell deletion in proliferative populations
- o Cell death in tumors
- Cell injury in some viral diseases (hepatitis)

Necrosis

Causes

- Coagulative (most common)
 - Cells basic outlines are preserved
 - Homogenous, glassy eosinophilic appearance due to loss of cytoplasmic RNA(basophilic) and glycogen (granular)
 - Nucleus may show any of pyknosis, karyorrhexis, or karyolysis
- Liquefactive most often in CNS and abscess usually from enzymatic dissolution of necrotic cells (usually due to release of proteolytic enzymes from neutrophils)
- Caseous
 - Gross form resembles cheese
 - Micro form amorphous, granular eosinophilic material surrounded by rim ofinflammatory cells (no visible cell outlines, tissue architecture is obliterated)
 - Usually seen in infections (mycobacterial and fungal)
- Enzymatic fat necrosis
 - Hydrolytic action of lipases on fat, most often in and

ROHINI COLLEGE OF ENGINEERING

- around pancreas, can also be seen in other fatty body areas (usually via trauma)
- Fatty acids released via hydrolysis □ react with Ca⁺⁺ to form chalky white areas "saponification"
- Gangrenous necrosis
 - Most often in extremities via trauma/physical injury
 - Dry gangrene no bacterial superinfection, looks dry
 - Wet gangrene has bacterial superinfection, looks wet and liquefactive
- Fibrinoid necrosis
 - Usually seen in walls of vessels (vasculitides)
 - Glassy, eosinophilic fibrin-like material deposited within vascular walls
 - Immune disorders