INNER PRODUCT

Definition: Let V be a vector space over a field F, An inner product on V is a function from $V \times V \to F$ that assigns, to ever ordered pair of vectors x and y in V, a scalar in F, denoted by $\langle x, y \rangle$ such that for all $x, y, z \in V$ and scalar $\alpha \in F$ the following axioms hold:

$$I_1: \langle x, x \rangle > 0 \text{ if } x \neq 0$$

 $I_2: \langle x + z, y \rangle = \langle x, y \rangle + (z, y)$
 $I_3: \langle \alpha x, y \rangle = \alpha(x, y)$

 $I_4:\overline{\langle x,y\rangle}=\langle y,x\rangle$, where the bar denotes the complex conjucation.

Note:

For real numbers i.e., F = R, the complex conjugate of a number is itself. Then I_3 reduces to

$$\langle x, y \rangle = \langle y, x \rangle$$

Properties of inner product:

If V is an inner product space, then for $x, y, z \in V$ and scalar $a \in F$ the following statements are true.

(i)
$$\langle x, 0 \rangle = (0, x) = 0$$

(ii)
$$(x, x) = 0$$
 if and only if $x = 0$

(iii)
$$\langle x, \alpha y \rangle = \bar{a}(x, y)$$

(iv)
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$
 E OPTIMIZE OUTSPREA

(v)
$$(x, y) = \langle x, z \rangle$$
 for all $x \in V$, then $y = z$.

Proof:

(i)
$$\langle 0, x \rangle = \langle 0 + 0, x \rangle$$

= $\langle 0, x \rangle + \langle 0, x \rangle = 0$
 $\therefore \langle x, 0 \rangle = \langle \overline{0}, x \rangle = \overline{0} = 0$

(ii)
$$(x, x) = 0$$
 if and only if $x = 0$

Let
$$x = 0$$
. Then $\langle x, x \rangle = \langle 0, 0 \rangle = 0$

We know that $\langle x, x \rangle > 0$ if $x \neq 0$

Obviously $\langle x, x \rangle = 0$ if and only if x = 0.

(iii)

$$(x, ay) = \overline{\langle ay, x \rangle}$$

$$= \overline{\alpha(y, x)}$$

$$= \overline{\alpha(y, x)}$$

$$= \overline{\alpha(y, y)}$$

$$\therefore \overline{\langle ax, y \rangle} = \overline{\alpha(x, y)} = \overline{\langle y + z, x \rangle}$$

$$(iv)(x, y + z) = \overline{\langle y + z, x \rangle}$$

$$= \therefore (x, y + z) = \langle x, y \rangle + \langle x, z \rangle$$

$$= \overline{\langle y, x \rangle} + \overline{\langle z, x \rangle} = \langle x, y \rangle + (x, z) \Rightarrow (x, y + z) = \langle x, y \rangle + (x, z)$$

$$(v) \text{ Assume } \langle x, y \rangle = \langle x, z \rangle \dots (1), \text{ for all } x \in V$$

$$\text{Consider } (x, y - z) = \langle x, y \rangle - \langle x, z \rangle$$

$$= \langle x, y \rangle - \langle x, y \rangle [\text{ From } (iv)]$$

$$= 0 \dots (2)$$

$$\text{Take } x = y - z, \text{ we get,}$$

$$\langle y - z, y - z \rangle = 0$$

$$\Rightarrow y - z = 0$$

 $\Rightarrow y = z$

If $x \neq y$, then from (2), we get

Either
$$x = 0$$
 or $y - z = 0$

$$\therefore y = z$$

Definition: Inner product space

A vector space endowed with a specific inner product is called product space. Standard inner product of F^n

Let
$$x, y \in F^n$$
. Then $x = (a_1, a_2, ..., a_n)$ and $y = (b_1, b_2, ..., b_n)$. The inner $\langle x, y \rangle = a_1 \overline{b_1} + a_2 \overline{yb_2} + \cdots + a_n \overline{b_n}$

is called standard inner product on F^n .

Standard inner product of R^n

Let
$$x, y \in \mathbb{R}^n$$
. Then $x = (a_1, a_2, ..., a_n)$ and $y = (b_1, b_2, ..., b_n)$. The inner $\langle x, y \rangle = a_1b_1 + a_2b_2 + \cdots + a_nb_n$ is called standard inner product on \mathbb{R}^n .

3.1.1. PROBLEMS UNDER INNER PRODUCT SPACE

1. Let
$$x=(a_1,a_2,...,a_n)$$
, $y=(b_1,b_2,...,b_n)\in F^n$. Define inner product $\langle x,y\rangle=a_1\overline{b_1}+a_2\overline{b_2}+\cdots+a_n\overline{b_n}$. Verify F^n is an inner space.

Sol: Let
$$x, y, z \in V$$
 and $\alpha \in F$.

Let
$$x = (a_1, a_2, ..., a_n)$$
; $y = (b_1, b_2, ..., b_n)$ and $z = (c_1, c_2, ..., c_n)$

Given
$$\langle x, y \rangle = a_1 \overline{b}_1 + a_2 \overline{b}_2 + \dots + a_n \overline{b}_n$$

$$I_1:\langle x,x\rangle>0 \text{ if } x\neq 0$$

$$\langle x, x \rangle = a_1 \overline{a_1} + a_2 \overline{a_2} + \dots + a_n \overline{a_n}$$

$$= |a_1|^2 + |a_2|^2 + \dots + |a_n|^2 > 0 \ [\because a_i \neq 0 \text{ for some } i]$$

$$\therefore \langle x, x \rangle > 0 \text{ if } x \neq 0$$

$$\langle x, x \rangle = a_1 \overline{a_1} + a_2 \overline{a_2} + \dots + a_n \overline{a_n}$$

$$= |a_1|^2 + |a_2|^2 + \dots + |a_n|^2 > 0$$

$$\therefore (x, x) > 0 \text{ if } x \neq 0$$

$$I_2$$
: $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$

$$x + z = (a_1, a_2, ..., a_n) + (c_1, c_2, ..., c_n) = (a_1 + c_1, a_2 + c_2, ..., a_n + c_n)$$

$$(x+z,y) = (a_1+c_1)\overline{b}_1 + (a_2+c_2)\overline{b}_2 + \dots + (a_n+c_n)\overline{b}_n = a_1\overline{b}_1 + a_2\overline{b}_2 + \dots + (a_n+c_n)\overline{b}_1 + \dots + (a_n+c_n)\overline{b}_1 + \dots + (a_n+c_n)\overline{b}_1 + \dots + (a_n+c_n)\overline{b}_1 + \dots + (a_n+c_n)\overline{b}_2 + \dots + (a_n+c_n)\overline{b}_1 + \dots + (a_n+c_n)\overline{b}_2 + \dots + (a_n+c_n)\overline{b}_1 + \dots + (a_n+c_n)\overline{b}_2 + \dots + (a$$

$$\cdots + a_n \bar{b}_n + c_1 \bar{b}_1 + c_2 \bar{b}_2 + \cdots + c_1^2 + x, x$$

$$= a_1 \overline{b}_1 + a_2 \overline{b}_2 + \dots + a_n \overline{b}_n + c_1 \overline{b}_1 + c_2 \overline{b}_2 + \dots + c_n \overline{b}_n$$

$$= \langle x, y \rangle + \langle z, y \rangle$$

$$\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$$

$$I_3$$
: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$

We have
$$x = (a_1, a_2, ..., a_n)$$
.

$$\therefore ax = (aa_1, aa_2 + \dots, \alpha a_n)(ax_1y) = aa_1\overline{b_1} + \alpha a_2\overline{b_2} + \dots + \alpha a_n\overline{b_n}$$

$$= a(a_1\overline{b_1} + a_2\overline{b_2} + \dots + a_n\overline{b_n}) = a\langle x, y \rangle : \langle ax, y \rangle = a\langle x, y \rangle$$

$$I_4: \langle x, y \rangle = \langle y, x \rangle \langle x, y \rangle = a_1 \overline{b_1} + a_2 \overline{b_2} + \dots + a_n \overline{b_n} \langle x, y \rangle$$

$$= \overline{a_1 \overline{b_1} + a_2 \overline{b_2} + \dots + a_n \overline{b_n}} = \overline{a_1} b_1 + \overline{a_2} b_2 + \dots + \overline{a_n} b_n$$

$$= b_1 \overline{a_1} + b_2 \overline{a_2} + \dots + b_n \overline{a_n} = (y, x) : \overline{\langle x, y \rangle} = \langle y, x \rangle$$

2. Consider the vector space R^n . Prove that R^n is an inner product space with inner product $\langle x,y\rangle=a_1b_1+a_2b_2+\cdots+a_nb_n$

where
$$x = (a_1, a_2, ..., a_n)$$
 and $y = (b_1, b_2, ..., b_n)$.

Sol: Let $x, y, z \in V$ and $\alpha \in F$.

Let
$$x = (a_1, a_2, ..., a_n)$$
; $y = (b_1, b_2, ..., b_n)$ and $z = (c_1, c_2, ..., c_n)$

Given
$$\langle x, y \rangle = a_1b_1 + a_2b_2 + \dots + a_nb_n$$

$$I_1:(x,x)>0 \text{ if } x\neq 0$$

$$\langle x, x \rangle = a_1 a_1 + a_2 a_2 + \dots + a_n a_n$$

$$= a_1^2 + a_2^2 + \dots + a_n^2 > 0 \ [\because a_i \neq 0 \text{ for some } i]$$

$$\therefore (x,x) > 0 \text{ if } x \neq 0$$

$$I_{2}: (x + z, y) = \langle x, y \rangle + \langle z, y \rangle x + z = (a_{1}, a_{2}, ..., a_{n}) + (c_{1}, c_{2}, ..., c_{n})$$

$$= (a_{1} + c_{1}, a_{2} + c_{2}, ..., a_{n} + c_{n})(x + z, y)$$

$$= (a_{1} + c_{1})b_{1} + (a_{2} + c_{2})b_{2} + \cdots + (a_{n} + c_{n})b_{n}$$

$$= a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} + c_{1}b_{1} + c_{2}b_{2} + \cdots + c_{n}b_{n}$$

$$= \langle x, y \rangle + \langle z, y \rangle (x + z, y) = \langle x, y \rangle + \langle z, y \rangle I_{3}: \langle ax, y \rangle = \alpha(x, y)$$

We have $x = (a_1, a_2, ..., a_n)$.

$$\alpha x = (aa_1, aa_2, ..., aa_n)^{\langle \alpha x, y \rangle} = aa_1b_1 + aa_2b_2 + \cdots + aa_nb_1 = a\langle x, y \rangle$$

= $a(a_1b_1 + a_2b_2 + \cdots + a_nb_n) = a\langle x, y \rangle$

$$\therefore \langle \alpha x, y \rangle = a \langle x, y \rangle$$

$$I_4$$
: $\overline{\langle x, y \rangle} = \langle y, x \rangle$

$$\langle x, y \rangle = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\overline{\langle x, y \rangle} = \overline{a_1 b_1 + a_2 b_2 + \dots + a_n b_n}
= a_1 b_1 + a_2 b_2 + \dots + a_n b_n
= b_1 a_1 + b_2 a_2 + \dots + b_n a_n
= \langle y, x \rangle$$

$$\therefore \overline{\langle x, y \rangle} = \langle y, x \rangle$$

Hence \mathbb{R}^n is an inner product space.

3. Prove that R^2 is an inmer product space with an inner product defined

by
$$\langle x, y \rangle = a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2$$
 where $x = (a_1, a_2)$; $y = (b_1, b_2)$.

Sol; Let
$$x, y, z \in \mathbb{R}^2$$
 and $\alpha \in F$

Lat
$$x = (a_1, a_2)$$
; $y = (b_1, b_2)$ and $z = (c_1, c_2)$

Given
$$\langle x, y \rangle = a_1 b_1 - a_2 b_1 - a_1 b_2 + 2a_2 b_2$$

$$I_1:\langle x,x\rangle>0 \text{ if } x\neq 0$$

$$\langle x, x \rangle = a_1 a_1 - a_2 a_1 - a_1 a_2 + 2a_2 a_2 = a_1^2 - 2a_1 a_2 + 2a_2^2$$

= $a_1^2 - 2a_1 a_2 + a_2^2 + a_2^2$

$$= (a_1 - a_2)^2 + a_2^2 > 0 \ [\because a_1 \neq 0 \text{ or } a_2 \neq 0]$$

$$\therefore \langle x, x \rangle > 0 \text{ if } x \neq 0$$

$$I_2; \langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle x + z = (a_1, a_2) + (c_1, c_2)$$
$$= (a_1 + c_1, a_2 + c_2) \langle x + Z, y \rangle$$

$$= (a_1 + c_1)b_1 - (a_2 + c_2)b_1 - (a_1 + c_1)b_2 + 2(a_2 + c_2)b_2$$

$$= a_1b_1 + c_1b_1 - a_2b_1 - c_2b_1 - a_1b_2 - c_1b_2 + 2a_2b_2 + 2c_2b_2$$

$$= a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2 + c_1b_1 - c_2b_1 - c_1b_2 + 2c_2b_2$$

$$= \langle x, y \rangle + \langle z, y \rangle :: \langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$$

$$I_3$$
: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$

We have
$$x = (a_1, a_2)$$

we have
$$x = (a_1, a_2)$$

$$\therefore \alpha x = (\alpha a_1, \alpha a_2)$$

$$\langle \alpha x, y \rangle = \alpha a_1 b_1 - \alpha a_2 b_1 - \alpha a_1 b_2 + 2\alpha a_2 b_2$$

= $\alpha (a_1 b_1 - a_2 b_1 - a_1 b_2 + 2a_2 b_2)$
= $\alpha \langle x, y \rangle$

$$\therefore \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

$$I_4: \overline{\langle x, y \rangle} = \langle y, x \rangle$$

$$\frac{\langle x, y \rangle}{\langle x, y \rangle} = \frac{a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2}{a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2}$$

$$= a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2$$

$$= b_1 a_1 - b_2 a_2 - a_2 b_1 + 2b_2 a_2$$

= $\langle v, x \rangle$

$$\therefore \overline{\langle x, y \rangle} = \langle y, x \rangle$$

4. Let V be the set of all real functions defined on the clo interval [0,1]. The inner product on V is defined by $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)$ Prove that V(R) is an inner product space.

Sol:

Let $f, g, h \in V$ and $\alpha \in F$.

Hence R^2 is an inner product space with the given inner product.

Given
$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

 $I_1: \langle f, f \rangle > 0$ if $f \neq 0$
 $\langle f, f \rangle = \int_{-1}^1 f(t)f(t)dt$
 $= \int_{-1}^1 [f(t)]^2 dt > 0$
 $\therefore \langle f, f \rangle > 0$ if $f \neq 0$
 $I_2: \langle f + h, g \rangle = \langle f, g \rangle + \langle h, g \rangle$
 $\langle f + h, g \rangle = \int_{-1}^1 [f(t) + h(t)]g(t)dt$
 $= \int_{-1}^1 f(t)g(t) dt + \int_{-1}^1 h(t)g(t)dt$
 $= \langle f, g \rangle + \langle h, g \rangle$
 $\therefore \langle f + h, g \rangle = \langle f, g \rangle + \langle h, g \rangle$
 $I_3: \langle \alpha f, g \rangle = \alpha \langle f, g \rangle$
 $\langle \alpha f, g \rangle = \int_{-1}^1 (\alpha f)(t)g(t)dt$

$$= \alpha \int_{-1}^{1} f(t)g(t)dt$$

$$= \alpha \langle f, g \rangle$$

$$\therefore \langle (\alpha f, g) = \alpha \langle f, g \rangle$$

$$I_{4} : \overline{\langle f, g \rangle} = \langle g, f \rangle$$

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$$

$$\overline{\langle f, g \rangle} = \int_{-1}^{1} f(t)g(t)dt$$

$$= \int_{-1}^{1} f(t)g(t)dt$$

$$= \int_{-1}^{1} g(t)f(t)dt$$

$$= \langle g, f \rangle$$

$$\therefore \overline{\langle f, g \rangle} = \langle g, f \rangle$$

Therefore V(R) is an inner product space.

5. Let H be the vector space of all continuous complex value functions on

[0, 1]. Show that V is a complex inner product space with is product

$$\langle f,g\rangle = \frac{1}{3\pi} \int_0^1 f(t) \overline{g(t)} dt.$$

Sol:

Let $f, g, h \in V$ and $a \in F$.

Given
$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^1 f(t)g(t)dt$$

 $l_1: \langle f, f \rangle > 0 \text{ if } f \neq 0$
 $\langle f, f \rangle > 0 \text{ for } f \neq 0$

$$\langle f, f \rangle = \frac{1}{2\pi} \int_0^1 f(t) \overline{f(t)} dt$$
$$= \frac{1}{2\pi} \int_0^1 |f(t)|^2 dt > 0$$
$$\therefore (f, f) > 0 \text{ if } f \neq 0$$

$$I_{2}: (f+h,g) = \langle f,g\rangle + \langle h,g\rangle \langle f+h,g\rangle = \frac{1}{2\pi} \int_{0}^{1} (f+h)(t) \overline{g(t)} dt$$

$$= \frac{1}{2\pi} \int_{0}^{1} - [f(t) + h(t)] \overline{g(t)} dt$$

$$= \frac{1}{2\pi} \int_{0}^{1} f(t) \overline{g(t)} dt + \frac{1}{2\pi} \int_{0}^{1} h(t) \overline{g(t)} dt = \langle f,g\rangle + \langle h,g\rangle$$

$$\therefore \langle f+h,g\rangle = \langle f,g\rangle + \langle h,g\rangle I_{3}: \langle \alpha f,g\rangle = \alpha \langle f,g\rangle \langle \alpha f,g\rangle$$

$$= \frac{1}{2\pi} \int_{0}^{1} (\alpha f)(t) \overline{g(t)} dt = \alpha \frac{1}{2\pi} \int_{0}^{1} f(t) \overline{g(t)} dt = \alpha \langle f,g\rangle$$

$$\therefore \langle \alpha f,g\rangle = \alpha \langle f,g\rangle I_{4}: \overline{(f,g)} = (g,f)(f,g)$$

$$= \frac{1}{2\pi} \int_{0}^{1} f(t) \overline{g(t)} dt \overline{(f,g)} = \frac{1}{2\pi} \overline{\int_{0}^{1} f(t) \overline{g(t)} dt}$$

Therefore V(C) is an inner product space.

3.1.2. NORM OF A VECTOR

Definition

Let *V* be an inner product space and let $x \in V$ then norm or length of *x* is ||x|| and is defined by $||x|| = \sqrt{\langle x, x \rangle}$

9. Find the norm of the following vectors in $V_3(R)$ with, inner product:

$$(a)(1,1,1),(b)(1,2,3),(c)(3,-4,0),(d)(4x+5y)$$
 where $x=(1,-1,0)$ and $y=(1,2,3)$

Sol:

Let
$$x=(a_1, a_2, a_3)$$
; $y=(b_1, b_2, b_3) \in V_3$ (R)

The standard inner product space is

$$\langle x, y \rangle = \langle x, y \rangle = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$\therefore (x, x) = a_1^2 + a_2^2 + a_3^3$$

(a) Let
$$x = (1,1,1)$$

$$\|x\|^{2} = \langle x, x \rangle$$

$$= 1^{2} + 1^{2} + 1^{2}$$

$$= 3$$

$$\Rightarrow \|x\| = \sqrt{3}$$

(b) Let x = (1,2,3)

$$||x||^{2} = \langle x, x \rangle$$

$$= 1^{2} + 2^{2} + 3^{2}$$

$$= 14$$

$$\Rightarrow ||x|| = \sqrt{14}$$

(c) Let x = (3, -4, 0)

$$||x||^2 = 3^2 + (-4)^2 + 0^2$$

= 9 + 16
= 25
 $\Rightarrow ||x|| = 5$

(d) Let
$$u = 4x + 5y$$

$$= 4(1, -1,0) + 5(1,2,3)$$

$$= (4, -4,0) + (5,10,15)$$

$$= (9,6,15)$$

$$\parallel u \parallel^2 = \langle u, u \rangle$$

$$= 9^2 + 6^2 + 15^2$$

$$= 342$$

$$\Rightarrow \parallel u \parallel = \sqrt{342}$$

10. Find the norm of the following vectors in Euclidean space R^3 with standard inner product $(a)u=(2,1,-1),(b)v=\left(\frac{1}{2},\frac{2}{3},-\frac{1}{4}\right)$

Sol:

(a) Let
$$u = (2,1,-1)$$

 $||u||^2 = 2^2 + 1^2 + (-1)^2$
 $=6$

$$||u|| = \sqrt{6}$$

(b) Let
$$v = \left(\frac{1}{2}, \frac{2}{3}, -\frac{1}{4}\right)$$

$$||v||^2 = 6^2 + 8^2 + (-3)^2$$

$$=109$$

$$||v|| = \sqrt{109}$$

11. Find the norm of the following vectors in F^3 with standard inner

product:
$$x = (1 + i, 2, i), y = (3i, 2 + 3i, 4)$$
. Find (a) $||x||, (b) ||y||, (c) ||x + y||, (d) \langle x, y \rangle$

Sol: Let $x, y, z \in F^3$

Let
$$x = (a_1, a_2, a_3); y = (b_1, b_2, b_3)$$

 $\langle x, y \rangle = a_1 \overline{b}_1 + a_2 \overline{b}_2 + a_3 \overline{b}_3$
 $\langle x, x \rangle = |a_1|^2 + |a_2|^2 + |a_3|^2$
(a) $||x||^2 = \langle x, x \rangle$

Then

 $= |1 + i|^{2} + |2|^{2} + |i|^{2}$ $= 1^{2} + 1^{2} + 2^{2} + 1^{2}$ = 7 $\parallel x \parallel = \sqrt{7}$

(b)
$$\|y\|^2 = \langle y, y \rangle$$

$$= |3i|^2 + |2 + 3i|^2 + |4|^2$$

$$= 3^2 + 2^2 + 3^2 + 4^2$$

$$= 9 + 4 + 9 + 16$$

$$= 38$$

$$\|y\| = \sqrt{38}$$

$$(c)x + y = (1 + i, 2, i) + (3i, 2 + 3i, 4)$$

$$= (1 + 4i, 4 + 3i, 4 + i)$$

$$\|x + y\|^2 = |1 + 4i|^2 + |4 + 3i|^2 + |4 + i|^2$$

$$= 1^2 + 4^2 + 4^2 + 3^2 + 4^2 + 1^2$$

$$= 59$$

$$|| x + y || = \sqrt{59}$$
(d) $\langle x, y \rangle = \langle (1 + i, 2, i), (3i, 2 + 3i, 4) \rangle$

$$= (1 + i)(\overline{3}i) + 2(2 + 3i) + i4$$

$$= (1 + i)(-3i) + 2(2 - 3i) + 4i$$

$$= -3i + 3 + 4 - 6i + 4i$$

$$= 7 - 5i$$

12. Let V be an vector space of polynomials with the inner product given by

$$\langle f,g\rangle = \int_0^1 f(t)g(t)dt$$
. Let $f(t) = t + 2$ and $g(t) = t^2 - 2t - 3$ find (i)

 $\langle f, g \rangle$ (ii) $\parallel f \parallel$.

Sol:

Let
$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

(i)
$$= \int_0^1 (t+2)(t^2 - 2t - 3)dt$$

$$= \int_0^1 (t^3 - 2t^2 - 3t + 2t^2 - 4t - 6)dt$$

$$= \int_0^1 (t^3 - 7t - 6)dt$$

$$= \left[\frac{t^4}{4} - \frac{7t^2}{2} - 6t\right]_0^1$$

$$= \frac{1}{4} - \frac{7}{2} - 6$$

$$= -\frac{37}{4}$$

ii)

$$\|f\|^{2} = \langle f, f \rangle$$

$$= \int_{0}^{1} [f(t)]^{2} dt$$

$$= \int_{0}^{1} (t+2)^{2} dt$$

$$= \int_{0}^{1} (t^{2} + 4t + 4) dt$$

$$= \left[\frac{t^{3}}{3} + \frac{4t^{2}}{2} + 4t \right]_{0}^{1}$$

$$= \frac{1}{3} + 2 + 4$$

$$= \frac{19}{3}$$

$$\|f\| = \frac{\sqrt{19}}{\sqrt{3}}$$

13. For any non-zero vector, $x \in V$. prove that $y = \frac{x}{\|x\|}$ is a vector such that

||y|| = 1.

Sol: Consider

$$\langle y, y \rangle = \left\langle \frac{x}{\parallel x \parallel}, \frac{x}{\parallel x \parallel} \right\rangle$$

$$= \frac{1}{\parallel x \parallel} \cdot \frac{1}{\parallel x \parallel} \langle x, x \rangle$$

$$\langle y, y \rangle = \frac{1}{\parallel x \parallel^2} \parallel x \parallel^2$$

$$\parallel y \parallel^2 = 1$$

$$\parallel y \parallel = 1$$

Theorem 3.1: In an inner product space V,

(i) $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0

(ii)
$$\parallel \alpha x \parallel = |\alpha| ||x||$$

Proof:

(i)

$$\|x\| = \sqrt{\langle x, x \rangle}$$

$$\|x\|^2 = \langle x, x \rangle \ge 0$$

$$\|x\|^2 \ge 0$$

$$\|x\| \ge 0$$

Also $(x, x) \ge 0$ if and only if x = 0

Therefore $||x||^2 = 0$ if and only if x = 0

(ii)

$$\| \alpha x \|^2 = \langle \alpha x, \alpha x \rangle$$

$$= \alpha \langle x, \alpha x \rangle$$

$$= \alpha \bar{\alpha} \langle x, x \rangle$$

$$= |\alpha|^2 \| x \|^2$$

$$\| \alpha x \| = |\alpha| \| x \|$$

Theorem 3.2: [Schwarz's inequality]

For any two vectors x and y in an inner product space V,

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Proof:

If
$$x = 0$$
, then $||x|| = 0$.
 $||x|| ||y|| = 0$... (1)
Also $\langle x, y \rangle = \langle 0, y \rangle = 0$
 $||\langle x, y \rangle| = 0$... (2).

From (1) and (2)

$$|\langle x, y \rangle| = ||x|| ||y||$$

So the result is true.

Let $x \neq 0$. Then ||x|| > 0

Therefore $\frac{1}{\|x\|}$ is a positive number

Consider the vector

$$w = y - \frac{\langle y, x \rangle}{\|x\|^2} x$$

$$\langle w, w \rangle = \left\langle y - \frac{\langle y, x \rangle}{\|x\|^2} x, y - \frac{\langle y, x \rangle}{\|x\|^2} x \right\rangle$$

$$= \langle y, y \rangle - \left\langle y \left[\frac{\langle y, x \rangle}{\|x\|^2}; \right) - \left\langle \frac{\langle y, x \rangle}{\|x\|^2} x, y \right\rangle + \left\langle \frac{\langle y, x \rangle}{\|x\|^2} x, \frac{\langle y, x \rangle}{\|x\|^2} x \right\rangle$$

$$= \|y\|^{2} - \frac{\operatorname{Inner Product}}{\|x\|^{2}} \langle y, x \rangle - \frac{\langle y, x \rangle}{\|x\|^{2}} \langle x, y \rangle + \frac{\langle y, x \rangle \langle y, x \rangle}{\|x\|^{4}} \langle x, x \rangle$$

$$= \|y\|^{2} - \frac{\langle x, y \rangle \langle \langle x, y \rangle}{\|x\|^{2}} - \frac{\frac{\langle x, y \rangle}{\langle x, y \rangle}}{\|x\|^{4}} + \frac{\overline{\langle x, y \rangle} \langle x, y \rangle \|x\|^{2}}{\|x\|^{4}}$$

$$= \|y\|^{2} - \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}} - \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}} + \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}} [\because z\bar{z} = |z|^{2}]$$

$$(w, w) = \|y\|^{2} - \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}}$$

$$\therefore \|y\|^{2} - \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}} \ge 0$$

$$\|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2} \ge 0$$

 $||x||^2 ||y||^2 \ge |\langle x, y \rangle|^2 |\langle x, y \rangle|^2 \le ||x||^2 ||y||^2$ $|\langle x, y \rangle| \le ||x|| ||y||$

Theorem 3.3: [Triangle inequality]

For any two vectors x and y in an inner product space V,

$$||x + y|| \le ||x|| + ||y||$$
.

Proof:

Using the norm of vectors we have

$$| x + y ||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= || x ||^{2} + \langle x, y \rangle + \overline{\langle x, y \rangle} + || y ||^{2}$$

$$= || x ||^{2} + 2 \operatorname{Re} \langle x, y \rangle + || y ||^{2} [\because z + \overline{z} = 2 \operatorname{Re} (z)]$$

$$\leq || x ||^{2} + 2 || \langle x, y \rangle| + || y ||^{2} [\because \operatorname{Re} (z) \leq |z|]$$

$$\leq || x ||^{2} + 2 || x || || y || + || y ||^{2} [\operatorname{By Shwarz's inequivality}]$$

$$\leq (|| x || + || y ||)^{2}$$

$$|| x + y ||^{2} \leq (|| x || + || y ||)^{2}$$

$$|| x + y || \leq || x || + || y ||.$$

Theorem 3.4: [Parallelogram law]

For any two vectors x and y in an inner product space V,

 $\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$. What does this equation state about parallelograms in R^2 ?

Proof:

$$\| x + y \|^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= \| x \|^{2} + \langle x, y \rangle + \bar{x}, y + \| y \|^{2}$$

$$= \| x \|^{2} + 2\operatorname{Re}\langle x, y \rangle + \| y \|^{2} \dots (1)$$

and

$$\| x - y \|^2 = \langle x - y, x - y \rangle$$

$$= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$

$$= \| x \|^2 - [\langle x, y \rangle + \langle x, y \rangle] + \| y \|^2$$

$$= \| x \|^2 - 2\operatorname{Re}\langle x, y \rangle + \| y \|^2 \dots (2)$$

$$(1) + (2) \Rightarrow \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + 2\|y\|^2) \dots (3)$$

Let 0ABC be a parallelogram with sides of length 0A = ||x|| and 0C = ||y|| in R^2 . Therefore the length of the hypotenuses of 0ABC are AC = ||x + y|| and 0B = ||x - y||

$$(3) \Rightarrow 0B^2 + AC^2 = 0A^2 + AB^2 + BC^2 + CA^2 [\because |0A| = |BC|, |AB| = |C0|]$$

Therefore sum of the squares of the two diagonals is equal to the sum of squares of four sides.

