PROVING LANGUAGES NOT TO BE REGULAR

Theorem

Let L be a regular language. Then there exists a constant 'c' such that for every string w in L –

$|\mathbf{w}| \ge c$

We can break w into three strings, w = xyz, such that –

- |y| > 0
- $|xy| \le c$
- For all $k \ge 0$, the string $xy^k z$ is also in L.

Applications of Pumping Lemma

Pumping Lemma is to be applied to show that certain languages are not regular. It should never be used to show a language is regular.

- If L is regular, it satisfies Pumping Lemma.
- If L does not satisfy Pumping Lemma, it is non-regular.

Method to prove that a language L is not regular

- At first, we have to assume that L is regular.
- So, the pumping lemma should hold for L.
- Use the pumping lemma to obtain a contradiction -
 - Select w such that $|w| \ge c$
 - Select **y** such that $|\mathbf{y}| \ge 1$
 - Select **x** such that $|\mathbf{x}\mathbf{y}| \leq \mathbf{c}$
 - \circ Assign the remaining string to **z**.
 - \circ Select **k** such that the resulting string is not in **L**.

Hence L is not regular.

Problem

Prove that $\mathbf{L} = {\mathbf{a}^i \mathbf{b}^i \mid i \ge 0}$ is not regular.

Solution

- At first, we assume that **L** is regular and n is the number of states.
- Let $w = a^n b^n$. Thus $|w| = 2n \ge n$.
- By pumping lemma, let w = xyz, where $|xy| \le n$.
- Let $x = a^p$, $y = a^q$, and $z = a^r b^n$, where p + q + r = n, $p \neq 0$, $q \neq 0$, $r \neq 0$. Thus $|y| \neq 0$.
- Let k = 2. Then $xy^2z = a^pa^{2q}a^rb^n$.
- Number of as = (p + 2q + r) = (p + q + r) + q = n + q
- Hence, $xy^2z = a^{n+q}b^n$. Since $q \neq 0$, xy^2z is not of the form a^nb^n .
- Thus, xy^2z is not in L. Hence L is not regular.

