2.4 Recurrence Relations:

An equation that expresses a_{n}, the general term of the sequence $\left\{a_{n}\right\}$ in terms of one or more of the previous terms of the sequence, namely $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a non - negative integer is called a recurrence relation for $\left\{a_{n}\right\}$ or a difference equation.

If the terms of a sequence satisfies a recurrence relation, then the sequence is called a solution of the recurrence relation.

For example, we consider the famous Fibonacci sequence
$0,1,1,2,3,5,8,13,21$,

Which can be represented by the recurrence relation.

$$
F_{n}=F_{n-1}+F_{n-2}, n \geq 2
$$

and $F_{0}=0, F_{1}=1$

Here, $F_{0}=0, F_{1}=1$ are called initial conditions.

It is a second order recurrence relation.

Definition:

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=C_{1} a_{n-1}+C_{2} a_{n-2}+\ldots+C_{K} k a_{n-k}
$$

Where $C_{1}, C_{2}, \ldots, C_{k}$ are real numbers, and $C_{k} \neq 0$.

The recurrence relation in the definition is linear since the right - hand side is a sum of multiplies of the previous terms of the sequence.

The recurrence relation is homogeneous, since no terms occur that are not multiplies of the a_{j} 's.

The coefficients of the terms of the sequence are all constants, rather than function that depend on " n ".

The degree is k because a_{n} is expressed in terms of the previous k terms of the sequence.

Solving Linear Homogeneous Recurrence Relations With Constant

Coefficients:

\qquad

Step: 1 Write down the characteristic equation for the given recurrence relation.
Here, the degree of character equation is 1 less than the number of terms in recurrence relation.

Step: 2 By solving the characteristic equation find out the characteristic roots.

Step: 3 Depends upon the nature of roots, find out the solution a_{n} as follows:

Case (i) Let the roots be real and distinct say $r_{1}, r_{2}, \ldots, r_{n}$.

Then $a_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}+\alpha_{3} r_{3}{ }^{n}+\ldots+\alpha_{n} r_{n}{ }^{n}$ where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are arbitrary constants.

Case (ii) Let the roots be real and equal say $r_{1}=r_{2}=\ldots=r_{n}$.
Then $a_{n}=\alpha_{1} r_{1}^{n}+n \alpha_{2} r_{2}^{n}+n^{2} \alpha_{3} r_{3}^{n}+\ldots+n^{n} \alpha_{n} r_{n}^{n}$ where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are arbitrary constants.

Case (iii) When the roots are complex conjugate, then

$$
a_{n}=r^{n}\left(\alpha_{1} \cos n \theta+\alpha_{2} \sin n \theta\right)
$$

Step: 4 Apply initial conditions and find out arbitrary constants.

Note:

There is no single method or technique to solve all recurrence relations. There exist some recurrence relations which cannot be solved. The recurrence relation
$S(k)=2[S(k-1)]^{2}-k S(k-3)$ cannot be solved.

1. If the sequence $a_{n}=3 \cdot 2^{n}, n \geq 1$, then find the corresponding recurrence

 relation.
Solution:

Given $a_{n}=3 \cdot 2^{n}$

$$
\begin{aligned}
& \Rightarrow a_{n-1}=3 \cdot 2^{n-1} \\
& =3 \cdot \frac{2^{n}}{2} \\
& \Rightarrow a_{n-1}=\frac{a^{n}}{2} \\
& \Rightarrow a_{n}=2\left(a_{n-1}\right)
\end{aligned}
$$

Hence $a_{n}=2 a_{n-1}, n \geq 1$ with $a_{0}=3$
2. Find the recurrence relation for $S(n)=6(-5)^{n}, n \geq 0$

Solution:

Given $S(n)=6(-5)^{n}$

$$
\Rightarrow S(n-1)=6(-5)^{n-1}
$$

$$
=6 \frac{(-5)^{n}}{-5}
$$

$$
=\frac{S(n)}{-5}
$$

$$
\Rightarrow S(n)=-5 \cdot S(n-1), n \geq 0 \text { with } S(0)=6
$$

3. Find the recurrence relation from $y_{k}=A \cdot 2^{k}+B \cdot 3^{k}$

Solution:

Given $y_{k}=A \cdot 2^{k}+B \cdot 3^{k} \quad \ldots(1)$

$$
\begin{aligned}
& \Rightarrow y_{k+1}=A \cdot 2^{k+1}+B \cdot 3^{k+1} \\
& \quad=A \cdot 2^{k} \cdot 2+B \cdot 3^{k} \cdot 3 \\
& \quad=2 A \cdot 2^{k}+3 B \cdot 3^{k} \quad \ldots(2) \\
& \Rightarrow y_{k+2}=4 A \cdot 2^{k}+9 B \cdot 3^{k} \quad(3) \text {. }
\end{aligned}
$$

4. Find the recurrence relation from $y_{n}=A 3^{n}+B(-4)^{n}$

Solution:

$$
\begin{align*}
& \text { Given } y_{n}=A 3^{n}+B(-4)^{n} \\
& \begin{aligned}
\Rightarrow y_{n+1} & =y_{n}=A 3^{n+1}+B(-4)^{n+1} \\
& =A 3^{n} \cdot 3+B(-4)^{n} \cdot(-4) \\
& =3 A \cdot 3^{n}-4 B \cdot(-4)^{n}
\end{aligned} \\
& \Rightarrow y_{n+2}=9 A \cdot 3^{n}+16 B \cdot(-4)^{n} \\
& (3)+(2)-12(1) \tag{2}
\end{align*}
$$

$$
\Rightarrow y_{n+2}+y_{n+1}-12 y_{n}=9 A 3^{n}+16 B(-4)^{n}+3 A 3^{n}-4 B(-4)^{n}-12 A 3^{n}-
$$

$$
12 B(-4)^{n}=0
$$

$$
\Rightarrow y_{n+2}+y_{n+1}-y_{n}=0
$$

5. Find the solution to the recurrence relation $a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}$

 with the initial conditions $a_{0}=2, a_{1}=5, a_{2}=15$
Solution:

The recurrence relation can be written as $a_{n}-6 a_{n-1}+11 a_{n-2}-6 a_{n-3}=0$
The characteristic equation is $r^{3}-6 r^{2}+11 r-6=0$

By solving, we get the characteristic roots, $r=1,2,3$

Solution is $a_{n}=\alpha_{1} \cdot 1^{n}+\alpha_{2} 2^{n}+\alpha_{3} 3^{n} \ldots$ (A)

Given $a_{0}=2$, Put $n=0$ in (A)

$$
a_{0}=\alpha_{1} \cdot(1)^{0}+\alpha_{2}(2)^{0}+\alpha_{3}(3)^{0}
$$

(A) $\Rightarrow \alpha_{1}+\alpha_{2}+\alpha_{3}=2$
(1) Thraz 001

Given $a_{1}=5$, Put $n=1$ in (A)

$$
a_{1}=\alpha_{1} \cdot(1)^{1}+\alpha_{2}(2)^{1}+\alpha_{3}(3)^{1}
$$

(A) $\Rightarrow \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}=5$

Given $a_{2}=15$, Put $n=2$ in (A)

$$
a_{2}=\alpha_{1} \cdot(1)^{2}+\alpha_{2}(2)^{2}+\alpha_{3}(3)^{2}
$$

(A) $\Rightarrow \alpha_{1}+4 \alpha_{2}+9 \alpha_{3}=15$

To solve (1), (2) and (3)
(1) $\Rightarrow \alpha_{3}=2-\alpha_{1}-\alpha_{2}$

Using (4) in (2)
(2) $\Rightarrow 2 \alpha_{1}+\alpha_{2}=1$

Using (4) in (3)

$$
\begin{equation*}
\text { (3) } \Rightarrow 8 \alpha_{1}+5 \alpha_{3}=3 \tag{6}
\end{equation*}
$$

Solving (5) and (6), we get $\alpha_{1}=1$ and $\alpha_{2}=-1$

Using $\alpha_{1}=1$ and $\alpha_{2}=-1$ in (1) we get $\alpha_{3}=2$

Substituting $\alpha_{1}=1$ and $\alpha_{2}=-1$ and $\alpha_{3}=2$ in (A), we get

Solution is $a_{n}=1 \cdot 1^{n}-1 \cdot 2^{n}+2 \cdot 3^{n}$

