
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS3391 OBJECT ORIENTED PROGRAMMING

EventHandler<MouseEvent> eh = new EventHandler<MouseEvent>()

INTRODUCTION TO JAVAFX EVENT

Using JavaFX, several types of applications such as desktop, web, and graphical

applications can be developed. Most of the applications in the current world need

user interaction to work. For that, the event concept is used from JavaFX. An

event is said to have happened in the situations where the user interacts with the

application nodes. These events can be triggered using mouse movements,

button press, page scrolling, etc. That is, these events are able to give a

notification that something has happened from the user end.

Syntax of JavaFX Event

There are several events that JavaFX supports. For Event class, the

package used is javafx.event which is considered as the base class.

Following are the different types of events supported by JavaFX:

1. MouseEvent: This event occurs in the situation where the mouse is clicked.

 Represented Class: MouseEvent.
 Actions: Clicking mouse, pressing the mouse, releasing the mouse,

moving mouse, target entering, target exiting etc.

Syntax:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS3391 OBJECT ORIENTED PROGRAMMING

EventHandler<KeyEvent> eh = new EventHandler<KeyEvent>()

EventHandler<DragEvent> eh = new EventHandler<DragEvent>()

2. KeyEvent: This event occurs in the situation where a keystroke happens at the node.

 Represented Class: KeyEvent.

 Actions: Typing key, pressing a key, releasing the key.

Syntax:

3. DragEvent: This event occurs in the situation where dragging of the mouse is done.

 Represented Class: DragEvent.

 Actions: Entering drag, dropping drag, entering target, exiting target, drag over.

Syntax:

4. WindowEvent: This event occurs in the situation where a keystroke happens at the
node.

 Represented Class: WindowEvent.

 Actions: Hiding window, showing window.

Syntax:

How JavaFX Event Handling works?

 Event Handling is the process in which the decision to determine what

EventHandler<WindowEvent> eh = new EventHandler<WindowEvent>()

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS3391 OBJECT ORIENTED PROGRAMMING

has to have happened when an event occurs and how to control that

particular event.

 For this, a code is used as an event handler that gets executed at the time

which the event has occurred.

 JavaFX offers several handlers as well as filters for handling the events.

 That is, for every event in JavaFX, it has a target which is the node where

the event has occurred (these nodes can be scene, window, or node), a

source where the event has generated (mouse, keys, etc.), type of the

event (mouse event, key event, etc.).

Events

An event represents an occurrence of something of interest to the application, such
as a mouse being moved or a key being pressed. In JavaFX, an event is an instance
of
the javafx.event.Event class or any subclass of Event. JavaFX provides several
events, including DragEvent, KeyEvent, MouseEvent, ScrollEvent, and others.
You can define your own event by extending the Event class.

Every event includes the information described

in table . Table Event Properties

Property Description

Event
type

Type of event that occurred.

Source

Origin of the event, with respect to the location of the event in the event
dispatch chain. The source changes as the event is passed along the chain.

Property Description

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS3391 OBJECT ORIENTED PROGRAMMING

Target

Node on which the action occurred and the end node in the event dispatch
chain. The target does not change, however if an event filter consumes the
event during the event capturing phase, the target will not receive the event.

Event subclasses provide additional information that is specific to the type of
event. For example, the MouseEvent class includes information such as which
button was pushed, the number of times the button was pushed, and the position
of the mouse.

Event Types

An event type is an instance of the EventType class. Event types further classify
the events of a single event class. For example, the KeyEvent class contains the
following event types:

 KEY_PRESSED

 KEY_RELEASED

 KEY_TYPED

Event types are hierarchical. Every event type has a name and a super type. For
example, the name of the event for a key being pressed is KEY_PRESSED, and the
super type
is KeyEvent.ANY. The super type of the top-level event type is null. Figure 1-
1 shows a subset of the hierarchy.

Figure Event Type Hierarchy

The top-level event type in the hierarchy is Event.ROOT, which is equivalent to
Event.ANY. In the subtypes, the event type ANY is used to mean any event type in

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS3391 OBJECT ORIENTED PROGRAMMING

the event class. For
example, to provide the same response to any type of key event, use
KeyEvent.ANY as the event type for the event filter or event handler. To respond
only when a key is released, use the KeyEvent.KEY_RELEASED event type for the
filter or handler.

Event Targets

The target of an event can be an instance of any class that implements
the EventTarget interface. The implementation of the buildEventDispatchChain
creates the event dispatch chain that the event must travel to reach the target.

The Window, Scene, and Node classes implement the EventTarget interface and
subclasses of those classes inherit the implementation. Therefore, most of the
elements in your user interface have their dispatch chain defined, enabling you to
focus on responding to the events and not be concerned with creating the event
dispatch chain.

If you create a custom UI control that responds to user actions and that control is a
subclass of Window, Scene, or Node, your control is an event target through
inheritance. If your control or an element of your control is not a subclass of
Window, Scene, or Node, you must implement the EventTarget interface for that
control or element. For example,
the MenuBar control is a target through inheritance, but the MenuItem element
of a menu bar must implement the EventTarget interface so that it can receive
events.

