
 

 

 

What is an Adapter? 

An adapter is a class that transforms (adapts) an interface into another. 

For example, an adapter implements an interface A and gets injected an interface B. 

When the adapter is instantiated it gets injected in its constructor an object that 

implements interface B. This adapter is then injected wherever interface A is needed 

and receives method requests that it transforms and proxies to the inner object that 

implements interface B. 

If I managed to confuse you, no worries, I give a more concrete example further below. 

🙂 

Two different types of adapters 

The adapters on the left side, representing the UI, are called the Primary or Driving 

Adapters because they are the ones to start some action on the application, while the 

adapters on the right side, representing the connections to the backend tools, are 

called the Secondary or Driven Adapters because they always react to an action of 

a primary adapter. 

There is also a difference on how the ports/adapters are used: 



 On the left side, the adapter depends on the port and gets injected a concrete 

implementation of the port, which contains the use case. On this side, both the 

port and its concrete implementation (the use case) belong inside the 

application; 

 On the right side, the adapter is the concrete implementation of the port and is 

injected in our business logic although our business logic only knows about the 

interface. On this side, the port belongs inside the application, but its 

concrete implementation belongs outside and it wraps around some external 

tool. 

 



What are the benefits? 

Using this port/adapter design, with our application in the centre of the system, allows 

us to keep the application isolated from the implementation details like ephemeral 

technologies, tools and delivery mechanism 
 

COMMAND: 

The command pattern is a behavioral design pattern in which an object is used 

to encapsulate all information needed to perform an action or trigger an event at a later time. 
This information includes the method name, the object that owns the method and values for 
the method parameters. 

Four terms always associated with the command pattern 
are command, receiver, invoker and client. A command object knows about receiver and 
invokes a method of the receiver. Values for parameters of the receiver method are stored 
in the command.  

The receiver object to execute these methods is also stored in the command object 

by aggregation. The receiver then does the work when the execute()  method 

in command is called. An invoker object knows how to execute a command, and optionally 
does bookkeeping about the command execution.  

The invoker does not know anything about a concrete command, it knows only about 
the command interface. Invoker object(s), command objects and receiver objects are held 
by a client object, the client decides which receiver objects it assigns to the command 
objects, and which commands it assigns to the invoker.  

The client decides which commands to execute at which points. To execute a 
command, it passes the command object to the invoker object. 

Using command objects makes it easier to construct general components that need to 
delegate, sequence or execute method calls at a time of their choosing without the need to 
know the class of the method or the method parameters.  

Using an invoker object allows bookkeeping about command executions to be 
conveniently performed, as well as implementing different modes for commands, which are 
managed by the invoker object, without the need for the client to be aware of the existence 
of bookkeeping or modes. 

https://en.wikipedia.org/wiki/Behavioral_pattern
https://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Object_composition#Aggregation


System Design Strategy – Software Engineering 
A good system design is to organize the program modules in such a way that are easy to develop 
and change. Structured design techniques help developers to deal with the size and complexity of 
programs. Analysts create instructions for the developers about how code should be written and 
how pieces of code should fit together to form a program. 
Software Engineering is the process of designing, building, testing, and maintaining software. The 
goal of software engineering is to create software that is reliable, efficient, and easy to maintain. 
System design is a critical component of software engineering and involves making decisions 
about the architecture, components, modules, interfaces, and data for a software system. 
System Design Strategy refers to the approach that is taken to design a software system. 
There are several strategies that can be used to design software systems, including the 
following: 

1. Top-Down Design: This strategy starts with a high-level view of the system and gradually 
breaks it down into smaller, more manageable components. 

2. Bottom-Up Design: This strategy starts with individual components and builds the system up, 
piece by piece. 

3. Iterative Design: This strategy involves designing and implementing the system in stages, with 
each stage building on the results of the previous stage. 

4. Incremental Design: This strategy involves designing and implementing a small part of the 
system at a time, adding more functionality with each iteration. 

5. Agile Design: This strategy involves a flexible, iterative approach to design, where 
requirements and design evolve through collaboration between self-organizing and cross-
functional teams. 

The design of a system is essentially a blueprint or a plan for a solution for the system. The 
design process for software systems often has two levels. At the first level the focus is on 
deciding which modules are needed for the system, the specifications of these modules and how 
the modules should be interconnected. The design of a system is correct if a system built 
precisely according to the design satisfies the requirements of that system. The goal of the design 
process is not simply to produce a design for the system. Instead, the goal is to find the best 
possible design within the limitations imposed by the requirements and the physical and social 
environment in which the system will operate. 
The choice of system design strategy will depend on the particular requirements of the software 
system, the size and complexity of the system, and the development methodology being used. A 
well-designed system can simplify the development process, improve the quality of the software, 
and make the software easier to maintain. 

Importance of System Design Strategy: 
1. If any pre-existing code needs to be understood, organized, and pieced together. 
2. It is common for the project team to have to write some code and produce original programs 

that support the application logic of the system. 
There are many strategies or techniques for performing system design. They are: 

Bottom-up approach: 



The design starts with the lowest level components and subsystems. By using these components, 
the next immediate higher-level components and subsystems are created or composed. The 
process is continued till all the components and subsystems are composed into a single 
component, which is considered as the complete system. The amount of abstraction grows high 
as the design moves to more high levels.  
By using the basic information existing system, when a new system needs to be created, the 
bottom-up strategy suits the purpose. 

 
Bottom-up approach 

Advantages of Bottom-up approach: 
 The economics can result when general solutions can be reused. 
 It can be used to hide the low-level details of implementation and be merged with the top-

down technique. 

Disadvantages of Bottom-up approach: 
 It is not so closely related to the structure of the problem. 
 High-quality bottom-up solutions are very hard to construct. 
 It leads to the proliferation of ‘potentially useful’ functions rather than the most appropriate 

ones. 

Top-down approach: 
Each system is divided into several subsystems and components. Each of the subsystems is 
further divided into a set of subsystems and components. This process of division facilitates 
forming a system hierarchy structure. The complete software system is considered a single entity 
and in relation to the characteristics, the system is split into sub-systems and components. The 
same is done with each of the sub-systems.  
This process is continued until the lowest level of the system is reached. The design is started 
initially by defining the system as a whole and then keeps on adding definitions of the subsystems 
and components. When all the definitions are combined, it turns out to be a complete system.  



For the solutions of the software that need to be developed from the ground level, a top-down 
design best suits the purpose.  

 
Top-down approach 

Advantages of Top-down approach: 
 The main advantage of the top-down approach is that its strong focus on requirements helps 

to make a design responsive according to its requirements. 

Disadvantages of Top-down approach: 
 Project and system boundaries tend to be application specification-oriented. Thus, it is more 

likely that the advantages of component reuse will be missed. 
 The system is likely to miss, the benefits of a well-structured, simple architecture. 
 Hybrid Design: 

It is a combination of both top-down and bottom-up design strategies. In this, we can reuse the 
modules. 

Advantages of using a System Design Strategy: 
1. Improved quality: A well-designed system can improve the overall quality of the software, as it 

provides a clear and organized structure for the software. 
2. Ease of maintenance: A well-designed system can make it easier to maintain and update the 

software, as the design provides a clear and organized structure for the software. 
3. Improved efficiency: A well-designed system can make the software more efficient, as it 

provides a clear and organized structure for the software that reduces the complexity of the 
code. 

4. Better communication: A well-designed system can improve communication between 
stakeholders, as it provides a clear and organized structure for the software that makes it 
easier for stakeholders to understand and agree on the design of the software. 



5. Faster development: A well-designed system can speed up the development process, as it 
provides a clear and organized structure for the software that makes it easier for developers to 
understand the requirements and implement the software. 

Disadvantages of using a System Design Strategy: 
1. Time-consuming: Designing a system can be time-consuming, especially for large and 

complex systems, as it requires a significant amount of documentation and analysis. 
2. Inflexibility: Once a system has been designed, it can be difficult to make changes to the 

design, as the process is often highly structured and documentation-intensive. 

PUBLISH –SUBSCRIBE  

The publisher-subscriber (pub-sub) model is a widely used architectural pattern. We can 
use it in software development to enable communication between different components in a 
system. 

In particular, it is often used in distributed systems, where different parts of the system need to 
interact with each other but don’t want to be tightly coupled. 

In this tutorial, we’ll explore the pub-sub model, how it works, and some common use 
cases for this architectural pattern. 

2. Pub-Sub Model: Overview 

The pub-sub model involves publishers and subscribers, making it a messaging pattern. 
Specifically, the publishers are responsible for sending messages to the system, while 
subscribers are responsible for receiving those messages. 

Mainly, the pub-sub model is based on decoupling components in a system, which 
means that components can interact without being tightly coupled. 

https://www.baeldung.com/cs/v-model
https://www.baeldung.com/cs/deprecated-vs-obsolete


 

3. How the Pub-Sub Model Works 

In this section, we’ll discuss how this model works, including sending messages, 
checking for subscribers, receiving messages, registering for topics, decoupling 
publishers and subscribers, and additional features the message broker implements to 
enhance message delivery. 

3.1. Sending Messages 

A publisher sends a message to the message broker with a specific topic, which is a string that 
identifies the content of the message. 

3.2. Checking for Subscribers 

The message broker receives the message and checks the topic to see if any subscribers have 
expressed interest in receiving messages on that topic. Furthermore, if subscribers are 
interested in the topic, the message broker sends the message to all subscribers who have 
registered interest in that topic. 



3.3. Receiving Messages 

Subscribers receive the message from the message broker. Then, it can process the message 
as needed. However, the message is discarded if no subscribers are interested in the topic. 

3.4. Registering for Topics 

To receive messages on specific topics, subscribers can register interest in one or more topics 
with the message broker. Additionally, this feature enables subscribers to receive messages on 
topics they are interested in. 

3.5. Decoupling Publishers and Subscribers 

Publishers and subscribers do not need to know about each other’s existence since they 
interact only through the message broker, which acts as an intermediary. 

3.6. Additional Features 

The message broker can also implement additional features such as filtering messages based 
on content, ensuring message delivery, and providing message ordering guarantees. These 
features enhance the reliability and efficiency of message delivery. 

By decoupling publishers and subscribers, the pub-sub model allows them to interact through a 
message broker, which helps to reduce tight coupling between components in a system. 

This makes it an ideal messaging pattern for use in distributed systems, where different 
parts of the system must interact without being tightly coupled. 

 

4. Advantages and Disadvantages of the Pub-Sub 
Model 

The pub-sub model has several benefits. The following table summarizes its main 
advantages: 

https://ads.freestar.com/?utm_campaign=branding&utm_medium=lazyLoad&utm_source=baeldung.com&utm_content=baeldung_leaderboard_mid_3


 

However, the pub-sub model also has some drawbacks. The following table shows its 
main drawbacks: 

 

5. Use Cases for the Pub-Sub Model 



In this section, we’ll explore some use cases of this model, including real-time updates 
in online games, smart homes with IoT, and data distribution in data analytics. 

5.1. Real-time Updates in Online Games 

One of the use cases for the pub-sub model is online gaming, where publishers can send real-
time updates on player positions, score changes, and game events to all subscribers. 

Overall, this enhances the gaming experience and ensures all players receive the same 
updates simultaneously. 

5.2. Smart Homes with IoT 

The pub-sub model is also used in smart homes to send messages from sensors to actuators. 
For example, we can use this model to turn on the lights when someone enters a room. 

 

 

https://en.wikipedia.org/wiki/Realtime_Gaming
https://en.wikipedia.org/wiki/Internet_of_things
https://www.baeldung.com/cs/data-warehouses

	What is an Adapter?
	Two different types of adapters

	What are the benefits?
	System Design Strategy – Software Engineering
	Importance of System Design Strategy:
	Bottom-up approach:
	Advantages of Bottom-up approach:
	Disadvantages of Bottom-up approach:
	Top-down approach:
	Advantages of Top-down approach:
	Disadvantages of Top-down approach:
	Advantages of using a System Design Strategy:
	Disadvantages of using a System Design Strategy:
	PUBLISH –SUBSCRIBE
	2. Pub-Sub Model: Overview
	3. How the Pub-Sub Model Works
	3.1. Sending Messages
	3.2. Checking for Subscribers
	3.3. Receiving Messages
	3.4. Registering for Topics
	3.5. Decoupling Publishers and Subscribers
	3.6. Additional Features

	4. Advantages and Disadvantages of the Pub-Sub Model
	5. Use Cases for the Pub-Sub Model
	5.1. Real-time Updates in Online Games
	5.2. Smart Homes with IoT



