
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

1.3 CONTEXT-FREE GRAMMARS

 Developed by Noam Chomsky in the mid-1950s

 Language generators, meant to describe the syntax of natural languages

 Define a class of languages called context-free Languages.

A rule has a left-hand side (LHS) and a right-hand side (RHS), and consists of terminal and

nonterminal symbols

BNF- Backus-Naur Form (1959) – Invented by John Backus to describe the syntax of

Algol 58 – BNF is equivalent to context-free grammars

 An abstraction (or nonterminal symbol) can have more than one RHS.

 Abstractions are used to represent classes of syntactic structures.

 They act like syntactic variables (also called non-terminal symbols, or just non-terminals)

 Terminals are lexemes or tokens

 A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand side (RHS),

which is a string of terminals and/or non-terminals

Examples of BNF rules:

<ident_list> → identifier | identifier, <ident_list>

<if_stmt> → if <logic_expr> then <stmt>

BNF

A grammar is a finite nonempty set of rules. An abstraction (or nonterminal symbol) can have

more than one RHS

<Stmt> -> <single_stmt>

| begin <stmt_list> end

 Syntactic lists are described in BNF using recursion

<ident_list> -> ident

| ident, <ident_list>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Derivation

A derivation is a repeated application of rules, starting with the start symbol and ending

with a sentence (all terminal symbols)

An Example Grammar

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const

An Example Derivation

<program> => <stmts>

 => <stmt>

 => <var> = <expr>

 => a = <expr>

 => a = <term> + <term>

 => a = <var> + <term>

 => a = b + <term>

 => a = b + const

 Every string of symbols in a derivation is a sentential form

 A sentence is a sentential form that has only terminal symbols

 A leftmost derivation is one in which the leftmost nonterminal in each sentential form is

the one that is expanded

 A derivation may be neither leftmost nor Rightmost

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

A hierarchical representation of a derivation

a = b + const

Ambiguity in Grammars

A grammar is ambiguous if and only if it generates a sentential form that has two or more

distinct parse trees

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

An Unambiguous Expression Grammar

•If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

<expr> → <expr> - <term> | <term>

<term> → <term> / const| const

Operator Precedence

If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

<assign> → <id> = <expr>

<id> → A | B | C

<expr> → <expr> + <term> | <term>

<term> → <term> * <factor> | <factor>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

<factor> → (<expr>) | <id>

Associativity of Operators

Operator associativity can also be indicated by a grammar.

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

Extended BNF

 Optional parts are placed in brackets []

<proc_call> → ident [(<expr_list>)]

 Alternative parts of RHSs are fplaced inside parentheses and separated via vertical bars

<term> → <term> (+|-) const

 Repetitions (0 or more) are placed inside braces { }

<ident_list> → <identifier> {, <identifier>}

BNF

 <expr> → <term> |

 <expr> + <term> |

 <expr> - <term>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

 <term> → <factor> |

 <term> * <factor> |

 <term> / <factor>

EBNF

 <expr> → <term> {(+ | -) <term>}

 <term> → <factor> {(* | /) <factor>}

Recent Variations in EBNF

 Alternative RHSs are put on separate lines

 Use of a colon instead of =>

 Use of opt for optional parts

 Use of oneof for choices

