
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 1

3. REGRESSION TESTING, DEBUGGING, PROGRAM ANALYSIS

It is the process of testing the modified parts of the code and the

parts that might get affected due to the modifications to ensure that no

new errors have been introduced in the software after the modifications

have been made. Regression means the return of something and in the
software field, it refers to the return of a bug.

When to do regression testing?

 When a new functionality is added to the system and the
code has been modified to absorb and integrate that

functionality with the existing code.
 When some defect has been identified in the software and

the code is debugged to fix it.

 When the code is modified to optimize its working.

Process of Regression testing:

0 seconds of 17 seconds Volume 0% Firstly, whenever we make some

changes to the source code for any reason like adding new

functionality, optimization, etc. then our program when executed fails
in the previously designed test suite for obvious reasons. After the

failure, the source code is debugged in order to identify the bugs in the

program. After identification of the bugs in the source code,
appropriate modifications are made. Then appropriate test cases are

selected from the already existing test suite which covers all the

modified and affected parts of the source code. We can add new test
cases if required. In the end, regression testing is performed using the

selected test cases.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 2

Techniques for the selection of Test cases for Regression Testing:

 Select all test cases: In this technique, all the test cases are

selected from the already existing test suite. It is the simplest
and safest technique but not much efficient.

 Select test cases randomly: In this technique, test cases are

selected randomly from the existing test-suite, but it is only
useful if all the test cases are equally good in their fault

detection capability which is very rare. Hence, it is not used

in most of the cases.
 Select modification traversing test cases: In this technique,

only those test cases are selected which covers and tests the

modified portions of the source code the parts which are
affected by these modifications.

 Select higher priority test cases: In this technique, priority

codes are assigned to each test case of the test suite based
upon their bug detection capability, customer requirements,

etc. After assigning the priority codes, test cases with the

highest priorities are selected for the process of regression
testing. The test case with the highest priority has the highest

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 3

rank. For example, test case with priority code 2 is less

important than test case with priority code 1.

Tools for regression testing:

In regression testing, we generally select the test cases from the

existing test suite itself and hence, we need not compute their
expected output, and it can be easily automated due to this reason.

Automating the process of regression testing will be very much

effective and time saving. Most commonly used tools for regression
testing are:

 Selenium

 WATIR (Web Application Testing In Ruby)
 QTP (Quick Test Professional)

 RFT (Rational Functional Tester)

 Winrunner

 Silktest
Advantages of Regression Testing:

 It ensures that no new bugs has been introduced after adding

new functionalities to the system.

 As most of the test cases used in Regression Testing are

selected from the existing test suite, and we already know

their expected outputs. Hence, it can be easily automated by
the automated tools.

 It helps to maintain the quality of the source code.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 4

Disadvantages of Regression Testing:

 It can be time and resource consuming if automated tools are
not used.

 It is required even after very small changes in the code.

DEBUGGING

Debugging is the process of identifying and resolving errors, or bugs,
in a software system. It is an important aspect of software engineering

because bugs can cause a software system to malfunction, and can lead

to poor performance or incorrect results. Debugging can be a time-
consuming and complex task, but it is essential for ensuring that a

software system is functioning correctly.

There are several common methods and techniques used in debugging,
including:

1. Code Inspection: This involves manually reviewing the

source code of a software system to identify potential bugs
or errors.

2. Debugging Tools: There are various tools available for

debugging such as debuggers, trace tools, and profilers that
can be used to identify and resolve bugs.

3. Unit Testing: This involves testing individual units or

components of a software system to identify bugs or errors.

4. Integration Testing: This involves testing the interactions
between different components of a software system to

identify bugs or errors.

5. System Testing: This involves testing the entire software
system to identify bugs or errors.

6. Monitoring: This involves monitoring a software system for

unusual behavior or performance issues that can indicate the
presence of bugs or errors.

7. Logging: This involves recording events and messages

related to the software system, which can be used to identify
bugs or errors.

It is important to note that debugging is an iterative process, and it

may take multiple attempts to identify and resolve all bugs in a
software system. Additionally, it is important to have a well-defined

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 5

process in place for reporting and tracking bugs, so that they can be

effectively managed and resolved.
In summary, debugging is an important aspect of software

engineering, it’s the process of identifying and resolving errors, or

bugs, in a software system.

There are several common methods and techniques used in
debugging, including code inspection, debugging tools, unit testing,

integration testing, system testing, monitoring, and logging. It is an

iterative process that may take multiple attempts to identify and
resolve all bugs in a software system.

In the context of software engineering, debugging is the process

of fixing a bug in the software. In other words, it refers to identifying,
analyzing, and removing errors.

This activity begins after the software fails to execute properly

and concludes by solving the problem and successfully testing the
software.

It is considered to be an extremely complex and tedious task

because errors need to be resolved at all stages of debugging.
A better approach is to run the program within a debugger, which

is a specialized environment for controlling and monitoring the

execution of a program.
The basic functionality provided by a debugger is the insertion of

breakpoints within the code. When the program is executed within the

debugger, it stops at each breakpoint. Many IDEs, such as Visual C++
and C-Builder provide built-in debuggers.

Debugging Process: The steps involved in debugging are:

 Problem identification and report preparation.
 Assigning the report to the software engineer defect to verify

that it is genuine.

 Defect Analysis using modeling, documentation, finding and

testing candidate flaws, etc.
 Defect Resolution by making required changes to the

system.

 Validation of corrections.

The debugging process will always have one of two outcomes:

1. The cause will be found and corrected.

2. The cause will not be found.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 6

Later, the person performing debugging may suspect a cause, design

a test case to help validate that suspicion, and work toward error

correction in an iterative fashion.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 7

During debugging, we encounter errors that range from mildly

annoying to catastrophic.

As the consequences of an error increase, the amount of
pressure to find the cause also increases. Often, pressure sometimes

forces a software developer to fix one error and at the same time

introduce two more.

Debugging Approaches/Strategies:

1. Brute Force: Study the system for a longer duration to

understand the system. It helps the debugger to construct

different representations of systems to be debugged
depending on the need. A study of the system is also done

actively to find recent changes made to the software.

2. Backtracking: Backward analysis of the problem which

involves tracing the program backward from the location of
the failure message to identify the region of faulty code. A

detailed study of the region is conducted to find the cause of

defects.
3. Forward analysis of the program involves tracing the

program forwards using breakpoints or print statements at

different points in the program and studying the results. The
region where the wrong outputs are obtained is the region that

needs to be focused on to find the defect.

4. Using A debuggingexperience with the software debug the
software with similar problems in nature. The success of this

approach depends on the expertise of the debugger.

5. Cause elimination: it introduces the concept of binary
partitioning. Data related to the error occurrence are

organized to isolate potential causes.

6. Static analysis: Analyzing the code without executing it to
identify potential bugs or errors. This approach involves

analyzing code syntax, data flow, and control flow.

7. Dynamic analysis: Executing the code and analyzing its
behavior at runtime to identify errors or bugs. This approach

involves techniques like runtime debugging and profiling.

8. Collaborative debugging: Involves multiple developers
working together to debug a system. This approach is helpful

in situations where multiple modules or components are

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 8

involved, and the root cause of the error is not clear.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 9

9. Logging and Tracing: Using logging and tracing tools to

identify the sequence of events leading up to the error. This
approach involves collecting and analyzing logs and traces

generated by the system during its execution.

10. Automated Debugging: The use of automated tools and
techniques to assist in the debugging process. These tools

can include static and dynamic analysis tools, as well as

tools that use machine learning and artificial intelligence to
identify errors and suggest fixes.

Debugging Tools:

A debugging tool is a computer program that is used to test and
debug other programs. A lot of public domain software like gdb and

dbx are available for debugging. They offer console-based command-

line interfaces. Examples of automated debugging tools include code-
based tracers, profilers, interpreters, etc. Some of the widely used

debuggers are:

 Radare2
 WinDbg

 Valgrind
Difference Between Debugging and Testing:

Debugging is different from testing. Testing focuses on finding bugs,
errors, etc whereas debugging starts after a bug has been identified in

the software. Testing is used to ensure that the program is correct and

it was supposed to do with a certain minimum success rate. Testing
can be manual or automated. There are several different types of

testing unit testing, integration testing, alpha, and beta testing, etc.

Debugging requires a lot of knowledge, skills, and expertise. It can be
supported by some automated tools available but is more of a manual

process as every bug is different and requires a different technique,

unlike a pre-defined testing mechanism.

Advantages of Debugging:

Several advantages of debugging in software engineering:

1. Improved system quality: By identifying and resolving
bugs, a software system can be made more reliable and

efficient, resulting in improved overall quality.

2. Reduced system downtime: By identifying and resolving
bugs, a software system can be made more stable and less

https://en.wikipedia.org/wiki/Radare2
https://en.wikipedia.org/wiki/WinDbg
https://en.wikipedia.org/wiki/Valgrind
https://www.geeksforgeeks.org/software-testing-basics/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 10

likely to experience downtime, which can result in improved

availability for users.
3. Increased user satisfaction: By identifying and resolving

bugs, a software system can be made more user-friendly and

better able to meet the needs of users, which can result in
increased satisfaction.

4. Reduced development costs: Identifying and resolving

bugs early in the development process, can save time and
resources that would otherwise be spent on fixing bugs later

in the development process or after the system has been

deployed.

5. Increased security: By identifying and resolving bugs that
could be exploited by attackers, a software system can be

made more secure, reducing the risk of security breaches.

6. Facilitates change: With debugging, it becomes easy to
make changes to the software as it becomes easy to identify

and fix bugs that would have been caused by the changes.

7. Better understanding of the system: Debugging can help
developers gain a better understanding of how a software

system works, and how different components of the system

interact with one another.
8. Facilitates testing: By identifying and resolving bugs, it

makes it easier to test the software and ensure that it meets

the requirements and specifications.
In summary, debugging is an important aspect of software engineering

as it helps to improve system quality, reduce system downtime,

increase user satisfaction, reduce development costs, increase
security, facilitate change, a better understanding of the system, and

facilitate testing.

Disadvantages of Debugging:

While debugging is an important aspect of software engineering, there

are also some disadvantages to consider:

1. Time-consuming: Debugging can be a time-consuming
process, especially if the bug is difficult to find or

reproduce. This can cause delays in the development process

and add to the overall cost of the project.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 11

2. Requires specialized skills: Debugging can be a complex

task that requires specialized skills and knowledge. This can
be a challenge for developers who are not familiar with the

tools and techniques used in debugging.

3. Can be difficult to reproduce: Some bugs may be difficult
to reproduce, which can make it challenging to identify and

resolve them.

4. Can be difficult to diagnose: Some bugs may be caused by
interactions between different components of a software

system, which can make it challenging to identify the root

cause of the problem.

5. Can be difficult to fix: Some bugs may be caused by
fundamental design flaws or architecture issues, which can

be difficult or impossible to fix without significant changes

to the software system.
6. Limited insight: In some cases, debugging tools can only

provide limited insight into the problem and may not

provide enough information to identify the root cause of the
problem.

7. Can be expensive: Debugging can be an expensive process,

especially if it requires additional resources such as
specialized debugging tools or additional development time.

In summary, debugging is an important aspect of software engineering

but it also has some disadvantages, it can be time-consuming, requires
specialized skills, can be difficult to reproduce, diagnose, and fix, may

have limited insight, and can be expensive.

PROGRAM ANALYSIS

Program Analysis Tool is an automated tool whose input is the
source code or the executable code of a program and the output is the

observation of characteristics of the program.

It gives various characteristics of the program such as its size,
complexity, adequacy of commenting, adherence to programming

standards and many other characteristics. These tools are essential

to software engineering because they help programmers comprehend,

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 12

Improve and maintain software systems over the course of the whole

development life cycle.
Importance of Program Analysis Tools

1. Finding faults and Security Vulnerabilities in the

Code: Automatic programme analysis tools can find and
highlight possible faults, security flaws and bugs in the code.

This lowers the possibility that bugs will get it into

production by assisting developers in identifying problems
early in the process.

2. Memory Leak Detection: Certain tools are designed

specifically to find memory leaks and inefficiencies. By
doing so, developers may make sure that their software

doesn’t gradually use up too much memory.

3. Vulnerability Detection: Potential vulnerabilities like
buffer overflows, injection attacks or other security flaws

can be found using programme analysis tools, particularly

those that are security-focused. For the development of
reliable and secure software, this is essential.

4. Dependency analysis: By examining the dependencies

among various system components, tools can assist

developers in comprehending and controlling the
connections between modules. This is necessary in order to

make well-informed decisions during refactoring.

5. Automated Testing Support: To automate testing
procedures, CI/CD pipelines frequently combine programme

analysis tools. Only well-tested, high-quality code is

released into production thanks to this integration, helping in
identifying problems early in the development cycle.

Classification of Program Analysis Tools

Program Analysis Tools are classified into two categories:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 13

1. Static Program Analysis Tools

Static Program Analysis Tool is such a program analysis tool that

evaluates and computes various characteristics of a software product
without executing it. Normally, static program analysis tools analyze

some structural representation of a program to reach a certain

analytical conclusion.
Basically some structural properties are analyzed using static

program analysis tools. The structural properties that are usually

analyzed are:
1. Whether the coding standards have been fulfilled or not.

2. Some programming errors such as uninitialized variables.
3. Mismatch between actual and formal parameters.

4. Variables that are declared but never used.
Code walkthroughs and code inspections are considered as static

analysis methods but static program analysis tool is used to designate

automated analysis tools. Hence, a compiler can be considered as a

static program analysis tool.

2. Dynamic Program Analysis Tools

Dynamic Program Analysis Tool is such type of program analysis
tool that require the program to be executed and its actual behavior

to be observed. A dynamic program analyzer basically implements

the code. It adds additional statements in the source code to collect
the traces of program execution.

When the code is executed, it allows us to observe the behavior

of the software for different test cases. Once the software is tested
and its behavior is observed, the dynamic program analysis tool

performs a post execution analysis and produces reports which

describe the structural coverage that has been achieved by the
complete testing process for the program.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 14

For example, the post execution dynamic analysis report may

provide data on extent statement, branch and path coverage

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 15

achieved. The results of dynamic program analysis tools are in the form

of a histogram or a pie chart. It describes the structural coverage
obtained for different modules of the program.

The output of a dynamic program analysis tool can be stored and

printed easily and provides evidence that complete testing has been

done. The result of dynamic analysis is the extent of testing performed
as white box testing. If the testing result is not satisfactory then more test

cases are designed and added to the test scenario. Also dynamic analysis

helps in elimination of redundant test cases.

	3. REGRESSION TESTING, DEBUGGING, PROGRAM ANALYSIS
	Process of Regression testing:
	Techniques for the selection of Test cases for Regression Testing:
	Tools for regression testing:
	Advantages of Regression Testing:
	Disadvantages of Regression Testing:
	Debugging Approaches/Strategies:
	Debugging Tools:
	Difference Between Debugging and Testing:
	Advantages of Debugging:
	Disadvantages of Debugging:
	PROGRAM ANALYSIS
	1. Static Program Analysis Tools
	2. Dynamic Program Analysis Tools

