
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

Message ordering and group communication

Message ordering paradigms

 The order of delivery of messages in a distributed system is an important aspect of system

executions because it determines the messaging behavior that can be expected by the distributed

program. Distributed program logic greatly depends on this order of delivery.

 Several orderings on messages have been defined:

(i) non-FIFO

(ii) FIFO

(iii) causal order, and

(iv) synchronous order

Asynchronous executions

 An asynchronous execution (or A-execution) is an execution (E, ≺) for which the causality

relation is a partial order.

 On any logical link between two nodes in the system, messages may be delivered in any

order, not necessarily first-in first-out. Such executions are also known as non-FIFO executions.

Although each physical link typically delivers the messages sent on it in FIFO order due to the

physical properties of the medium, a logical link may be formed as a composite of physical links

and multiple paths may exist between the two end points of the logical link. As an example, the

mode of ordering at the Network Layer in connectionless networks such as IPv4 is non-FIFO. The

following Figure (a) illustrates an A-execution under non-FIFO ordering.

a) An A-execution that

is not a FIFO execution.

(b) An A-execution that

is also a FIFO

execution.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

FIFO executions

A FIFO execution is an A-execution in which,

for all (𝑠, 𝑟) and (𝑠′, 𝑟′) ∈ Τ, (𝑠~𝑠′𝑎𝑛𝑑 𝑟 ~ 𝑟′𝑎𝑛𝑑 𝑠 ≺ s′) ⇒ 𝑟 ≺ r′

On any logical link in the system, messages are necessarily delivered in the order in which they

are sent. Although the logical link is inherently non- FIFO, most network protocols provide a

connection-oriented service at the transport layer.

A simple algorithm to implement a FIFO logical channel over a non-FIFO channel would

use a separate numbering scheme to sequence the messages on each logical channel. The sender

assigns and appends a (sequence_num, connection_id) tuple to each message. The receiver uses a

buffer to order the incoming messages as per the sender’s sequence numbers, and accepts only the

“next” message in sequence. The above Figure (b) illustrates an A-execution under FIFO ordering.

Causally ordered (CO) executions

A CO execution is an A-execution in which,

for all (𝑠, 𝑟) and (𝑠′, 𝑟′) ∈ Τ, (𝑟 ~ 𝑟′𝑎𝑛𝑑 𝑠 ≺ s′) ⇒ 𝑟 ≺ r′

If two send events 𝑠 and 𝑠′ are related by causality ordering (not physical time ordering), then a

causally ordered execution requires that their corresponding receive events 𝑟 and 𝑟′ occur in the

same order at all common destinations. Note that if 𝑠 and 𝑠′ are not related by causality, then

CO is vacuously satisfied because the antecedent of the implication is false.

Causal order is useful for applications requiring updates to shared data, implementing

distributed shared memory, and fair resource allocation such as granting of requests for distributed

mutual exclusion.

To implement CO, we distinguish between the arrival of a message and its delivery. A

message m that arrives in the local OS buffer at Pi may have to be delayed until the messages that

were sent to Pi causally before m was sent (the “overtaken” messages) have arrived and are

processed by the application. The delayed message m is then given to the application for

processing. The event of an application processing an arrived message is referred to as a delivery

event (instead of as a receive event) for emphasis.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

Definition of causal order (CO) for implementations

If send(m1) ≺ send(m2) then for each common destination d of messages m1 and m2,

deliverd (m
1)≺ deliverd(m

2) must be satisfied.

Observe that if the definition of causal order is restricted so that m1 and m2 are sent by the

same process, then the property degenerates into the FIFO property. In a FIFO execution, no

message can be overtaken by another message between the same (sender, receiver) pair of

processes. The FIFO property which applies on a per-logical channel basis can be extended

globally to give the CO property. In a CO execution, no message can be overtaken by a chain of

messages between the same (sender, receiver) pair of processes.

Message order (MO)

A MO execution is an A-execution in which,

for all (𝑠, 𝑟) and (𝑠′, 𝑟′) ∈ Τ 𝑠 ≺ s′ ⇒ ¬(𝑟 ≺ r′)

Empty-interval execution

An execution (E,≺) is an empty-interval (EI) execution if for each pair of events

(𝑠, 𝑟) ∈ 𝑇, the open interval set {𝑥 ∈ 𝐸|𝑠 ≺ 𝑥 ≺ 𝑟} in the partial order is empty.

Synchronous execution (SYNC)

When all the communication between pairs of processes uses synchronous send and receive

primitives, the resulting order is the synchronous order. As each synchronous communication

involves a handshake between the receiver and the sender, the corresponding send and receive

events can be viewed as occuring instantaneously and atomically.

a) Execution in an

Asynchronous

system

b) Equivalent

instantaneous

communication

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

In a timing diagram, the “instantaneous” message communication can be shown by

bidirectional vertical message lines. Figure (a) shows a synchronous execution on an asynchronous

system. Figure (b) shows the equivalent timing diagram with the corresponding instantaneous

message communication.

The “instantaneous communication” property of synchronous executions requires a

modified definition of the causality relation because for each (𝑠, 𝑟) ∈ 𝑇, the send event is not

causally ordered before the receive event. The two events are viewed as being atomic and

simultaneous, and neither event precedes the other.

Causality in a synchronous execution

The synchronous causality relation ≪ on E is the smallest transitive relation that satisfies

the following:

Synchronous execution

A synchronous execution (or S-execution) is an execution (E, ≪) for which the causality

relation ≪ is a partial order.

Timestamping a synchronous execution

 An execution (E, ≺) is synchronous if and only if there exists a mapping from E to T

(scalar timestamps) such that

By assuming that a send event and its corresponding receive event are viewed atomically,

i.e., s(M) ≺ r(M) and r(M) ≺ s(M), it follows that for any events ei and ej that are not the send

event and the receive event of the same message, ei ≺ ej =⇒ T(ei) < T(ej).

