PUMPING LEMMA FOR CFL

If L is a context-free language, there is a pumping length p such that any string $w \in L$ of length \geq p can be written as w = uvxyz, where $vy \neq \varepsilon$, $|vxy| \leq p$, and for all $i \geq 0$, $uvixyiz \in L$.

Applications of Pumping Lemma

Pumping lemma is used to check whether a grammar is context free or not. Let us take an example and show how it is checked.

Problem

Find out whether the language $L = \{xnynzn \mid n \ge 1\}$ is context free or not.

Solution

Let L is context free. Then, L must satisfy pumping lemma.

At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n.

Break z into uvwxy, where

 $|vwx| \le n \text{ and } vx \ne \varepsilon.$

Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at least (n+1) positions apart. There are two cases –

Case 1 - vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would have to be in L, has n 2s, but fewer than n 0s or 1s.

Case 2 – vwx has no 0s.

Here contradiction occurs.

Hence, L is not a context-free language.

CFL Closure Property

Context-free languages are closed under -

- Union
- Concatenation
- Kleene Star operation

Union

Let L1 and L2 be two context free languages. Then L1 \cup L2 is also context free.

Example

Let L1 = { anbn, n > 0 }. Corresponding grammar G1 will have P: S1 \rightarrow aAb|ab

Let L2 = { cmdm , $m \ge 0$ }. Corresponding grammar G2 will have P: S2 \rightarrow cBb| ε

Union of L1 and L2, $L = L1 \cup L2 = \{ anbn \} \cup \{ cmdm \}$

The corresponding grammar G will have the additional production $S \rightarrow S1 \mid S2$

Concatenation

If L1 and L2 are context free languages, then L1L2 is also context free.

Example

Union of the languages L1 and L2, $L = L1L2 = \{anbncmdm\}$

The corresponding grammar G will have the additional production $S \rightarrow S1 S2$

Kleene Star

If L is a context free language, then L* is also context free.

Example

Let L = { anbn, $n \ge 0$ }. Corresponding grammar G will have P: S \rightarrow aAb| ε

Kleene Star L1 = { anbn }*

The corresponding grammar G1 will have additional productions S1 \rightarrow SS1 $\mid\epsilon$

Context-free languages are not closed under -

- Intersection If L1 and L2 are context free languages, then L1 ∩ L2 is not necessarily context free.
- Intersection with Regular Language If L1 is a regular language and L2 is a context free language, then L1 ∩ L2 is a context free language.
- Complement If L1 is a context free language, then L1' may not be context free.