## 1.3 EFFECTS OF FEEDBACK

#### Stabilization of Gain:

- The gain of the amplifier may change due to the changes in the parameters of the transistor or the supply voltage variation.
- The gain A of the feedback amplifier is independent of internal gain A and depends only on feedback fraction.

W.K.T,

$$A_f = \frac{A}{1 + \beta A}$$

Diff.w.r.t A

$$dA_f = \frac{dA}{(1+\beta A)^2}$$

Dividing both sides by Af we get

$$\frac{dA_f}{A_f} = \frac{dA}{(1+\beta A)^2} X \frac{1}{A_f}$$

$$\left|\frac{dA_f}{A_f}\right| = \left|\frac{dA}{A}\right| \frac{1}{|(1+\beta A)|}$$

Where  $\left| \frac{dA_f}{A_f} \right|$  = fractional change in gain with the feedback

 $\left| \frac{dA}{A} \right|$  = fractional change in gain without the feedback.

- The sensitivity of transfer gain of the feedback amplifier A<sub>f</sub> with respect to the
  variations in the internal amplifier gain A is defined as the ratio of the fractional
  change in gain with the feedback to the fractional change in gain without the
  feedback.
- The sensitivity is  $\frac{1}{|(1+\beta A)|}$
- The inverse or reciprocal of sensitivity is called De-Sensitivity.

$$D = 1 + \beta A$$

The stability of the amplifier increases with increase in desensitivity

#### Reduction in distortion:

- The negative feedback reduces the non-linear distortion in the output signal.
- Nonlinear distortion occurs when an active device in the amplifier has nonlinear transfer characteristics.
- The negative feedback reduces the nonlinear distortion by the factor

$$D = 1 + \beta A$$

#### Increase in Bandwidth:

- The negative feedback decreases the lower cut off frequency f while increases the upper cut off frequency f i.e. it increases the bandwidth of the amplifier.
- This implies that if the band width of the gain A has certain values (say 1MHz), by applying negative feedback, it can be increased.
- The increase, happens by sacrificing the value of the gain A.
- It implies a mid-band gain of A<sub>Mf</sub> and a high frequency band width of A<sub>Hf</sub>.
   Lower Cutoff frequency

$$f_{Lf} = \frac{f_L}{1 + A_{mid} \beta}$$

Upper cutoff frequency

$$f_{Hf} = (1 + A_{mid} \beta) f_H$$

- It can be clearly seen that the new mid-band gain is (1+A β) times smaller than
  the mid-band gain without feedback, but the high frequency band width is (1+Aβ)
  times larger than the band width without feedback.
- Thus an extension of band width by the factor  $(1+A\beta)$  has been achieved.
- Band width = Upper cut-off Frequency Lower cut-off Frequency

$$BW = (1 + A_{mid} \beta) f_H - \frac{f_L}{1 + A_{mid} \beta}$$



Fig.1.3.1 effect of negative feedback on gain and bandwidth

(Source: Microelectronics by J. Millman and A. Grabel, , 2nd ed., Page-212)

 Bandwidth with negative feedback increases by factor (1+Aβ) and gain decreases by same factor, the gain bandwidth product of an amplifier does not altered, when negative feedback is introduced

### Reduction in Noise:

- Almost all amplifier circuit produces noise due to presence of active and passive components in it.
- The negative feedback can be used to reduce the noise in amplifiers.
- It is possible to improve signal to noise ration of an amplifier under certain conditions.

- A noisy amplifier is modified by a noiseless amplifier in series with noise source
  V<sub>n</sub>.
- · The output voltage of this noisy amplifier is given by,

$$V_0 = A(V_S + V_n)$$

The signal to noise ratio is given by

$$\frac{S}{N} = \frac{V_S}{V_n}$$

- It is possible to improve S/N ratio of this noisy amplifier by preceding a noise free preamplifier
- The signal to noise ratio at the output is given by

$$S/N = \frac{V_s A_p}{V_n}$$

 We can improve SNR of a noisy amplifier by factor of A<sub>p</sub> if a noise-free preamplifier with a voltage gain A<sub>p</sub> precedes a noisy amplifier.

# Input impedance:

- If the feedback signal is added to the input in series with the applied voltage it increases the input resistance.
- Hence, the input resistance with feedback  $R_{if} = \frac{V_s}{I_i}$  is greater than the input resistance without feedback.
- Feedback signal is added to the input in shunt with applied voltage, it decreases the input resistance.
- Hence, the input resistance with feedback  $R_{if} = \frac{V_i}{I_s}$  is decreased.

# **Output impedance:**

- Negative Feedback which samples the output voltage, it decreases output resistance.
- Negative Feedback which samples the output Current, it Increases output resistance