2 Laminar Flow Forced Convection Heat Transfer

2.1Forced Convection Heat Transfer Principles

The mechanism of heat transfer by convection requires mixing of one portion of fluid

with another portion due to gross movement of the mass of the fluid. The transfer of heat energy
from one fluid particle or a molecule to another one is still by conduction but the energy is

transported from one point in space to another by the displacement of fluid.

When the motion of fluid is created by the imposition of external forces in the form of

pressure differences, the process of heat transfer is called‘forced convection’ And. the motion

of fluid particles may be either laminar or turbulent and that depends upon the relative magnitude
of inertia and viscous forces, determined by the dimensionless parameter Reynolds number. In
free convection, the velocity of fluid particle is very small in comparison with the velocity
of fluid particles in forced convection, whether laminar or turbulent. In forced convection

heat

transfer, Gr/Re’<< 1, in free convection heat transfer, GrRe”>>>1 and we have combined free and

forced convection when Gr/Re? 1.

~

2.2. Methods for Determining Heat Transfer Coefficient

The convective heat transfer coefficient in forced flow can be evaluated by: (a)

Dimensional Analysis combined with experiments;

(b) Reynolds Analogy — an analogy between heat and momentum transfer; (c)

Analytical Methods _ exact and approximate analyses of boundary layer equations.

2.3. Method of Dimensional Analysis



As pointed out in Chapter 5, dimensional analysis does not yield equations which can be
solved. It simply combines the pertinent variables into non-dimensional numbers which facilitate
the interpretation and extend the range of application of experimental data. The relevant

variables for forced convection heat transfer phenomenon whether laminar or turbulent, are

(b) The properties of the fluid — density p, specific heat capacity Cp, dynamic or

absolute viscosity pthermal conductivity k.

(i1) The properties of flow-flow velocity Y, and the characteristic dimension of the

system L.

As such, the convective heat transfer coefficient, h, is writtenash =1 ( p, V, L, u, Cp,

K)=0 (5.14)

Since there are seven variables and four primary dimensions, we would expect three
dimensionless numbers. As before, we choose four independent or core variables as p,V, L, k,

and calculate the dimensionless numbers by applying Buckingham méshod:
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Equating the powers of M, L, T and 0 on both sides, we get
M:a+d+1=0
L:-3a+b+c+d=0
T:-b-3d-3=0 By solving them, we have
0:-d-1=0. D=-1,a=0,b=0,c=1.

Therefore, ;= hL/k is the Nusselt number.
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Equating the powers of M, L, T and on both sides, we get



M:a+d+1=0

L:-3a+b+c+d=1=0
T:-b-3d-1=0

0:-d=0.

By solving them,d=0,b=-1,a=-1,c=-1
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(Reynolds number is a flow parameter of greatest significance. It is the ratio of inertia
forces to viscous forces and is of prime importance to ascertain the conditions under which a
flow is laminar or turbulent. It also compares one flow with another provided the corresponding
length and velocities are comparable in two flows. There would be a similarity in flow between

two flows when the Reynolds numbers are equal and the geometrical similarities are taken into

consideration.)
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Equating the powers of M, L, T, on both Sides, we get

M:a+d=0; L:-3a+b+c+d+2=0
T:-b-3d-2=0; 0:-d-1=0
By solving them,

d=-la=Lb=Lc=1,

pVL | .
Ty = . Cpi s =myxm,

_pVL Cc M _HC,
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", Ts is Prandtl number.



Therefore, the functional relationship is expressed as:
Nu = f (Re, Pr); or Nu= C Re™ Pr" (5.15)
Where the values of ¢, m and n are determined experimentally.

2.4. Principles of Reynolds Analogy

Reynolds was the first person to observe that there exists a similarity between the
exchange of momentum and the exchange of heat energy in laminar motion and for that reason it
has been termed ‘Reynolds analogy’. Let us consi der the motion of a fluid where the fluid is
flowing over a plane wall. The X-coordinate is measured parallel to the surface and the V-
coordinate is measured normal to it. Since all fluids are real and viscous, there would be a thin
layer, called momentum boundary layer, in the vicinity of the wall where a velocity gradient
normal to the direction of flow exists. When the temperature of the surface of the wall is
different than the temperature of the fluid stream, there would also be a thin layer, called thermal
boundary layer, where there is a variation in temperature normal to the direction of flow. Fig. 2.6
depicts the velocity distribution and temperature profile for the laminar motion of the fluid

flowing past a plane wall.
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Fig. 2.6 velocity distribution and temperature profile for laminar motion of the fluid

over a plane surface

In a two-dimensional flow, the shearing stress is given by T = du



T
and the rate of heat transfer per unit area is given by 9wk d

A p du
For Pr = nCp/k = 1, we have k/pi = C,, and therefore, we can write after separating the

variables,

Q  Gu—_dT (5.16)
AT, C

p

Assuming that Q and 1, are constant at any station X, we integrate equation (5.16)

between the limits: u =0 when T =Ty, and u = U o, when T =T o, and we get,
Q/( 4w Cp)x U, =(Ty-T,)
Since by definition, Q/A =h(T,, - T, ), and 1,, = Cg, xpU_?/2,
Where Cyy , is the skin friction coefficient at the station x. We have
Cy /2=hy/ (CopUx) (5.17)
Since hy /C,pU,, =(hyx/k)x (1/pxU,,)x(k/1Cp ) = Nu, /(Re.Pr),
Nu, /Re.Pr =Cy, /2 =Stantonnumer, St. (5.18)

Equation (5.18) is satisfactory for gases in which Pr is approximately equal to unity.
Colburn has shown that Eq. (5.18) can also be used for fluids having Prandtl numbers ranging
from 0.6 to about 50 if it is modified in accordance with experirnental results.

Or, Nu, p2/3 _St Pr*? _C /2 (5.19)
Re, Pr * B

Eq. (5.19) expresses the relation between fluid friction and heat transfer for laminar
flow over a plane wall. The heat transfer coefficient could thus be determined by making

measurements of the frictional drag on a plate under conditions in which no heat transfer is

involved.



Example 2.4 Glycerine at 35°C flows over a 30cm by 30cm flat plate at a velocity of
1.25 m/s. The drag force is measured as 9.8 N (both Side of the plate). Calculate the heat transfer

for such a flow system.
Solution: From tables, the properties of glycerine at 35°C are:
p = 1256 kg/m?, C, = 2.5 kJ/kgK, p = 0.28 kg/m-s, k = 0.286 W/mK, Pr=2.4 Re=
p VL/p = 1256 x 1.25 x 0.30/0.28 = 1682.14, a laminar flow.*
Average shear stress on one side of the plate = drag force/area
=90.8/(2x0.3x0.3)=54.4
and shear stress = C ¢ p U%/2

T
pU2

. The average skin friction coefficient, Cr/ 2 =

=54.4/( 1256 x1.25 x 1.25)=0.0277

From Reynolds analogy, Cs/2 = St. Pr 23

1256.,2.5 ,1.25 ,0.0277
(2'45)0.667

=59.8 kW/m?K.

or,h= CUxCy2 x Pr-23 =

2.5. Analytical Evaluation of ‘h’ for Laminar Flow over a Flat Plat — Assumptions

As pointed out earlier, when the motion of the fluid is caused by the imposition of
external forces, such as pressure differences, and the fluid flows over a solid surface, at a
temperature different from the temperature of the fluid, the mechanism of heat transfer is called
‘forced convection’. Therefore, any analytical approach to determine the convective heat transfer
coefficient would require the temperature distribution in the flow field surrounding the body.
That is, the theoretical analysis would require the use of the equation of motion of the viscous
fluid flowing over the body along with the application of the principles of conservation of mass

and energy in order to relate the heat energy that is convected away by the fluid from the solid

surface.

For the sake of simplicity, we will consider the motion of the fluid in 2 space



dimension, and a steady flow. Further, the fluid properties like viscosity, density, specific heat,
etc are constant in the flow field, the viscous shear forces m the Y-direction is negligible and

there are no variations in pressure also in the Y -direction.
2.6. Derivation of the Equation of Continuity-Conservation of Mass

We choose a control volume within the laminar boundary layer as shown in Fig. 6.2.
The mass will enter the control volume from the left and bottom face and will leave the control

volume from the right and top face. As such, for unit depth in the Z-direction,

: . Ou
m,;, =pudy; my-=p|u +d—.dx y;
X

: . du
m,p=pvdx; mgy,=p v+d—.dy X;
y

For steady flow conditions, the net efflux of mass from the control volume is zero,

therefore,
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Fig. 2.7 a differential control volume within the boundary layer for laminar flow over a

plane wall

~Uu AV
pudy + pxdx _ pudy " pc_dxdy " pde i ¢ .dxdy

ox ox
or, Adu/ ox + ov + oy = 0, the equation of continuity. (2.20)

Concept of Critical Thickness of Insulation

The addition of insulation at the outside surface of small pipes may not reduce the rate
of heat transfer. When an insulation is added on the outer surface of a bare pipe, its outer radius,
1o increases and this increases the thermal resistance due to conduction logarithmically whereas t
he thermal resistance to heat flow due to fluid film on the outer surface decreases linearly with
increasing radius, ro. Since the total thermal resistance is proportional to the sum of these two

resistances, the rate of heat flow may not decrease as insulation is added to the bare pipe.

Fig. 2.7 shows a plot of heat loss against the insulation radius for two different cases.
For small pipes or wires, the radius 11 may be less than re and in that case, addition of insulation
to the bare pipe will increase the heat loss until the critical radius is reached. Further addition of
insulation will decrease the heat loss rate from this peak value. The insulation thickness (r% )
must be added to reduce the heat loss below the uninsulated rate. If the outer pipe radius 1 is

greater than the critical radius re any insulation added will decrease the heat loss.



