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      MULTIPLICATION OF LARGE INTEGERS 

Some applications like modern cryptography require manipulation of integers that 

are over 100 decimal digits long. Since such integers are too long to fit in a single word of a 

modern computer, they require special treatment. 

In the conventional pen-and-pencil algorithm for multiplying two n-digit integers, each 

of the n digits of the first number is multiplied by each of the n digits of the second number 

for the total of n2 digit multiplications. 

The divide-and-conquer method does the above multiplication in less than n2 digit 

multiplications. 

 

 

Example: 23 ∗ 14 = (2 · 101 + 3 · 100) ∗ (1 · 101 + 4 ·100) 

= (2 ∗ 1)102 + (2 ∗ 4 + 3 ∗ 1)101 + (3 ∗ 4)100 

= 2· 102 + 11· 101 + 12·100 

= 3· 102 + 2· 101 + 2·100 

= 322 

The term (2∗1+3∗4) computed as2∗4+3∗1=(2+3)∗(1+4)–(2∗1)−(3∗4).Here 

(2∗1)and(3∗4)arealreadycomputedused.Soonlyonemultiplicationonlywehavetodo. 

For any pair of two-digit numbers a = a1a0 and b = b1b0, their product c can be computed 

by the formula c = a ∗ b = c2102 + c1101 + c0, 

where 

c2 = a1∗ b1 is the product of their first digits, 

c0 = a0∗ b0 is the product of their second digits, 

c1=(a1+a0)∗(b1+b0)−(c2+c0)is the product of the sum of the 

a’s digits and the sum of the b’s digits minus the sum of c2 andc0. 

Now we apply this trick to multiplying two n-digit integers a and b where n is a positive 

even number. Let us divide both numbers in the middle to take advantage of the divide-and- 

conquer technique. 

We denote the first half of the a’s digits by a1 and the second half by a0; for b, the 
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notations are b1 and b0, respectively. In these notations, a = a1a0 implies that a = a110n/2 + a0 

and b = b1b0 implies that b = b110n/2 + b0. Therefore, taking advantage of the same trick we 

used for two-digit numbers, we get 

C = a ∗ b = (a110n/2 + a0) * (b110n/2 + b0) 

 

= (a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0) 

 

= c210n + c110n/2 + c0, 

 

where 

c2 = a1* b1 is the product of their first halves, 

c0== a0* b0 is the product of their second halves, 

c1 = (a1 + a0) * (b1 + b0) − (c2 + c0) 

 

If n/2 is even, we can apply the same method for computing the products c2, c0, and c1. 

Thus, if n is a power of 2, we have a recursive algorithm for computing the product of two n- 

digit integers. In its pure form, the recursion is stopped when n becomes 1. It can also be 

stopped when we deem n small enough to multiply the numbers of that size directly. 

 

 

The multiplication of n-digit numbers requires three multiplications of n/2-digit numbers, 

the recurrence for the number of multiplications M(n) is M(n) = 3M(n/2) for n >1, M(1) 

=1.Solving it by backward substitutions for n = 2kyields 

 

M(2k) = 3M(2k−1) 

 

= 3[3M(2k−2)] 

                        = 32M(2k−2) 

 

= . . . 

 

= 3iM(2k−i) 

 

= . . . 

 

= 3kM(2k−k) 

 

= 3k. 
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(Since k = log2n) 

M(n) =
2 

3log
2 

n = nlog 3 ≈ n1.585. 

 

(On the last step, we took advantage of the following property of logbarithmsb: alogc= cloga.) 

Let A(n) be the number of digit additions and subtractions executed by the above 

algorithm in multiplying two n-digit decimal integers. Besides 3A(n/2) of these operations 

needed to compute the three products of n/2-digit numbers, the above formulas require 

five additions and one subtraction. Hence, we have the recurrence 

A(n) = 3· A(n/2) + cn for n >1, A(1) = 1. 

 

By using Master Theorem, we obtain A(n) ∈Θ(nlog
2
3), 

 

which means that the total number of additions and subtractions have the same 

asymptotic order of growth as the number of multiplications. 

 

 

Example: For instance: a = 2345, b = 6137, 

i.e., n=4. Then C = a * b = 

(23*102+45)*(61*102+37) 

C = a ∗ b = (a110n/2 + a0) * (b110n/2 + b0) 

 

= (a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0) 

 

= (23 * 61)104 + (23 * 37 + 45 * 61)102 + (45 * 37) 

 = 1403•104 + 3596•102 + 1665 

= 14391265 

 

 

 

STRASSEN’S MATRIX MULTIPLICATION 

 

The Strassen’s Matrix Multiplication find the product C of two 2 × 2 matrices A and B 
 

with just seven multiplications as opposed to the eight required by the brute-force algorithm. 
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where 

 
 

Thus, to multiply two 2 × 2 matrices, Strassen’s algorithm makes 7 multiplications and 

18 additions/subtractions, whereas the brute-force algorithm requires 8 multiplications and 

4 additions. These numbers should not lead us to multiplying 2 × 2 matrices by Strassen’s 

algorithm. Its importance stems from its asymptotic superiority as matrix order n goes to 

infinity. 

 

Let A and B be two n × n matrices where n is a power of 2. (If n is not a power of 

2, matrices can be padded with rows and columns of zeros.) We can divide A, B, and their 

product C into four n/2 × n/2 submatrices each as follows: 

 

 

 

The value C00 can be computed either as A00 * B00 + A01 * B10 or as M1 + M4 − M5 

+ M7 where M1, M4, M5, and M7 are found by Strassen’s formulas, with the numbers 

replaced by the corresponding submatrices. The seven products of n/2 × n/2 matrices are 

computed recursively by Strassen’s matrix multiplication algorithm. 

 

The asymptotic efficiency of Strassen’s matrix multiplication algorithm 

If M(n) is the number of multiplications made by Strassen’s algorithm in 

multiplying two n×n matrices, where n is a power of 2, The recurrence relation is M(n) = 

7M(n/2) for n > 1, M(1)=1. 

Since n = 2k, 

 
M(2k) = 7M(2k−1) 
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2 

 
= 7[7M(2k−2)] 

 
= 72M(2k−2) 

 
= . . . 

 
= 7iM(2k−i) 

 
= . . . 

= 7kM(2k−k) = 7kM(20) = 7kM(1)= 7k(1) (Since M(1)=1) 

 
M(2k) = 7k. 

 
Since k = log2n, 

M(n) = 7logn 

= nlog 7 2 

 

≈n2.807 

 
which is smaller than n3 required by the brute-force algorithm. 

Since this savings in the number of multiplications was achieved at the expense of 

making extra additions, we must check the number of additions A(n) made by Strassen’s 

algorithm. To multiply two matrices of order n>1, the algorithm needs to multiply seven 

matrices of order n/2 and make 18 additions/subtractions of matrices of size n/2; when n 

= 1, no additions are made since two numbers are simply multiplied. These observations 

yield the following recurrence relation: 

A(n) = 7A(n/2) + 18(n/2)2 for n >1, A(1) = 0. 

 
By closed-form solution to this recurrence and the Master Theorem, A(n) ∈ Θ(nlog7). which is 

2 

A better efficiency class than Θ(n3)of the brute-force method. 
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