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Boundary Conditions For Electromagnetic Fields 

Introduction 
Maxwell’s equations characterize macroscopic matter by means of its permittivity ε, permeability μ, and conductivity 
σ, where these properties are usually represented by scalars and can vary among media. One result of these boundary 

conditions is that waves at boundaries are generally partially transmitted and partially reflected with directions and 

amplitudes that depend on the two media and the incident angles and polarizations. Static fields also generally have 
different amplitudes and directions on the two sides of a boundary. Some boundaries in both static and dynamic 

situations also possess surface charge or carry surface currents that further affect the adjacent fields. The boundary 

conditions governing the perpendicular components of and follow from the integral forms of Gauss’s laws: 

 
We may integrate these equations over the surface S and volume V of the thin infinitesimal pillbox 

illustrated in Figure. The pillbox is parallel to the surface and straddles it, half being on each side of the 

boundary. The thickness δ of the pillbox approaches zero faster than does its surface area S, where S is 

approximately twice the area A of the top surface of the box. 

 
Beginning with the boundary condition for the perpendicular component D , we integrate Gauss’s law over the 
pillbox to obtain: 

 
where ρ is the surface charge density [Coulombs m ]. The subscript s for surface charge ρ distinguishes it from the 

volume charge density ρ [C m ]. The pillbox is so thin (δ → 0) that: 1) the contribution to the surface integral of the 
sides of the pillbox vanishes in comparison to the rest of the integral, and 2) only a surface charge q can be contained 

within it, where ρ = q/A = lim ρδ as the charge density ρ → ∞ and δ → 0. Thus the above equation becomes D1 – D2 

= ρ , which can be written as: 

 
where is the unit overlinetor normal to the boundary and points into medium 1. Thus the perpendicular component of 

the electric displacement overlinetor changes value at a boundary in accord with the surface charge density ρ . 

Because Gauss’s laws are the same for electric and magnetic fields, except that there are no magnetic charges, the 
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same analysis for the magnetic flux density in the second equation yields a similar boundary condition: 

 
Thus the perpendicular component of must be continuous across any boundary.  

 

Boundary conditions for parallel field components  

The boundary conditions governing the parallel components of and follow from Faraday’s and Ampere’s laws: 

 
We can integrate these equations around the elongated rectangular contour C that straddles the boundary and has 

infinitesimal area A, as illustrated in the below figure. We assume the total height δ of the rectangle is much less than 
its length W, and circle C in a right�hand sense relative to the surface normal. 

 
Beginning with Faraday’s law, we find: 

 
where the integral of over area A approaches zero in the limit where δ approaches zero too; there can be no impulses 

in . Since W ≠ 0, it follows from previous equation that E - E = 0, or more generally: 

 
Thus the parallel component of must be continuous across any boundary. A similar integration of Ampere’s law, 

under the assumption that the contour C is chosen to lie in a plane perpendicular to the surface current and is 

traversed in the right-hand sense, yields: 
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where we note that the area integral of approaches zero as δ → 0, but not the integral over the surface 

current , which occupies a surface layer thin compared to δ. Thus , or more generally: 

 
where is defined as pointing from medium 2 into medium 1. If the medium is non conducting,  

A simple static example illustrates how these boundary conditions generally result in fields on two sides of a 
boundary pointing in different directions. Consider the magnetic fields and illustrated in the below figure where , and 

both media are insulators so the surface current must be zero. 

 
Thus θ approaches 90 degrees when μ >> μ , almost regardless of θ , so the magnetic flux inside high permeability 

materials is nearly parallel to the walls and trapped inside, even when the field orientation outside the medium is 

nearly perpendicular to the interface. The flux escapes high-μ material best when θ ≅ 90°. This phenomenon is 
critical to the design of motors or other systems incorporating iron or nickel. If a static surface current flows at the 

boundary, then the relations between and are altered along with those for and . Similar considerations and methods 

apply to static electric fields at a boundary, where any static surface charge on the boundary alters the relationship 

between and . Surface currents normally arise only in non-static or “dynamic” cases. 

 


