UNIT-IV

FOURIER TRANSFORMS

Fourier sine and cosine transforms:

Fourier sine Transform

We know that the Fourier sine integral is

$$
f(x)=\frac{2}{\pi} \quad \int_{0}^{\infty} \sin \lambda x \cdot \int_{0}^{\infty} f(t) \sin \lambda t d t . d \lambda
$$

Replacing λ by s, we get

The function $F_{s}(s)$, as defined by (1), is known as the Fourier sine transform of $f(x)$. Also the function $\mathrm{f}(\mathrm{x})$, as given by (2), is called the Inverse Fourier sine transform of $\mathrm{F}_{\mathrm{s}}(\mathrm{s})$.

Fourier cosine transform

Similarly, it follows from the Fourier cosine integral

$$
f(x)=\frac{2}{\pi} \quad \int_{0}^{\infty} \cos \lambda x \cdot \int_{0}^{\infty} f(t) \cos \lambda t d t . d \lambda .
$$

that if

$$
\begin{equation*}
F_{c}(s)=\sqrt{ }(2 / \pi) \int_{0}^{f}(x) \cos s x d x . \tag{3}
\end{equation*}
$$

\qquad
then $f(x)=ل(2 / \pi) \int F_{c}(s) \operatorname{coss} x d s$.

The function $\mathrm{F}_{\mathrm{c}}(\mathrm{s})$, as defined by (3), is known as the Fourier cosine transform of $f(x)$. Also the function $f(x)$, as given by (4), is called the Inverse Fourier cosine transform of $\mathrm{F}_{\mathrm{C}}(\mathrm{s})$.

Properties of Fourier sine and cosine Transforms

If $F_{s}(s)$ and $F_{c}(s)$ are the Fourier sine and cosine transforms of $f(x)$ respectively, the following properties and identities are true.

(1) Linearity property

$$
F_{s}[a f(x)+b g(x)]=a F_{s}\{f(x)\}+b F_{s}\{g(x)\} .
$$

and $\quad F_{c}[a f(x)+b g(x)]=a F_{c}\{f(x)\}+b F_{c}\{g(x)\}$.
(2) Change of scale property

$$
F_{s}[f(a x)]=(1 / a) F_{s}[s / a] .
$$

and

$$
F_{c}[f(a x)]=(1 / a) F_{c}[s / a] .
$$

(3) Modulation Theorem

i. $\quad F_{s}[f(x) \sin a x]=(1 / 2)\left[F_{c}(s-a)-F_{c}(s+a)\right]$.
i. $\quad F_{s}[f(x) \cos a x]=(1 / 2)\left[F_{s}(s+a)+F_{s}(s-a)\right]$.
ii. $\quad F_{c}[f(x) \cos a x]=(1 / 2)\left[F_{c}(s+a)+F_{c}(s-a)\right]$.
iii. $\quad F_{c}[f(x) \operatorname{sinax}]=(1 / 2)\left[F_{s}(s+a)-F_{s}(s-a)\right]$.

Proof

The Fourier sine transform of $\quad f(x)$ sinax is given by

$$
\begin{aligned}
\mathrm{F}_{\mathrm{s}}[\mathrm{f}(\mathrm{x}) \operatorname{sinax}] & =\sqrt{ }(2 / \pi) \int_{0}^{\infty}(f(x) \operatorname{sinax}) \sin s x d x . \\
& =(1 / 2) \quad \sqrt{ }(2 / \pi) \int_{0}^{\infty} f(x)[\cos (s-a) x-\cos (s+a) x] d x . \\
& =(1 / 2)\left[\mathrm{F}_{\mathrm{c}}(\mathrm{~s}-\mathrm{a})-\mathrm{F}_{\mathrm{c}}(\mathrm{~s}+\mathrm{a})\right] .
\end{aligned}
$$

Similarly, we can prove the results (ii), (iii) \& (iv).
(4) Parseval's identity

Proof

$$
\text { i.e., } \int_{0}^{\infty} F_{c}(s) G_{c}(s) d s=\int_{0}^{\infty} f(x) g(x) d x
$$

Similarly, we can prove the second identity and the other identities follow by settingg $(x)=$ $f(x)$ in the first identity.

Property (5)

If $F_{s}(s)$ and $F_{c}(s)$ are the Fourier sine and cosine transforms of $f(x)$ respectively, then

Proof

The Fourier cosine transform of $f(x)$,
i.e., $\quad F_{c}(s)=\sqrt{ }(2 / \pi) \int f(x) \operatorname{coss} x d x$.

Differentiating w.r.t s, we get

Similarly, we can prove

$$
\mathrm{F}_{\mathrm{c}}\{\mathrm{xf}(\mathrm{x})\}=--\left\{\mathrm{F}_{\mathrm{s}}(\mathrm{~s})\right\} \mathrm{ds}
$$

Example 8

Find the Fourier sine and cosine transforms of $\mathrm{e}^{-\mathrm{ax}}$ and hence deduce the inversionformula.

The Fourier sine transform of $f(x)$ is given by TRE OUTSPRED

$$
F_{s}\{f(x)\}=\sqrt{(2 / \pi)} \int f(x) \operatorname{sinsx} d x .
$$

Now, $\quad F_{s}\left\{e^{-a x}\right\}=\sqrt{ }(2 / \pi) \int e_{0}^{-a x} \sin s x d x$.

$$
\begin{gathered}
=\sqrt{ }(2 / \pi) \quad\left\{\frac{e^{-a x}(-a \sin s x-s \cos s x)}{a^{2}+s^{2}}\right\}_{0}^{\infty} \\
=\sqrt{ }(2 / \pi) \frac{s}{a^{2}+s^{2}} \quad, \text { if } a>0
\end{gathered}
$$

The Fourier cosine transform of $f(x)$ is given by

$$
F_{c}\{f(x)\}=\sqrt{ }(2 / \pi) \int \underset{0}{f(x)} \operatorname{coss} x d x
$$

Now,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}\left\{\mathrm{e}^{-\mathrm{ax}}\right\}=\sqrt{ }(2 / \pi) \int_{0}^{\mathrm{e}^{-\mathrm{ax}} \cos s \mathrm{x}} \mathrm{dx} . \\
& =\sqrt{ }(2 / \pi)\left\{\frac{\mathrm{e}^{-\mathrm{ax}}(-\mathrm{a} \cos s x+\mathrm{s} \sin s x)}{a^{2}+s^{2}}\right\}_{0}^{\infty}
\end{aligned}
$$

$$
=\sqrt{ }(2 / \pi) \frac{a}{a^{2}+s^{2}} \text {, if } a>0
$$

Example 9

Find the Fourier cosine transform of $f(x)=$

$$
x, \quad \text { for } 0<x<1
$$

$2-x$, for $1<x<2$

$$
0, \quad \text { for } x>2
$$

The Fourier cosine transform of $f(x)$,

$$
\text { ie., } F_{c}\{f(x)\}=\sqrt{(2 / \pi \varphi} \int x \cos s x d x .+\sqrt{(2 / \pi)} \quad \int(2-x) \operatorname{coss} x d x \text {. }
$$

$$
=\sqrt{ }(2 / \pi) \int_{0}^{1} x d\left(\frac{\sin s x}{s}\right)+\sqrt{ }(2 / \pi) \int_{1}^{2}(2-x) d \quad\left(\frac{\sin s x}{s}\right)
$$

$$
\begin{aligned}
& =\sqrt{ }(2 / \pi)\left\{\left(\frac{\sin s}{s}+\frac{\cos s}{s^{2}}-\frac{1}{s^{2}}\right)\right. \\
& \left.+\left(-\frac{\cos 2 s}{s^{2}}-\frac{\sin s}{s}+\frac{\cos s}{s^{2}}\right)\right\} \\
& =\sqrt{ }(2 / \pi)\left(\frac{2 \cos s}{s^{2}}-\frac{\cos 2 s}{s^{2}}-\frac{1}{s^{2}}\right.
\end{aligned}
$$

Example 10

The Fourier sine transform of $f(x)$ is given by

$$
F_{s}\{f(x)\}=\sqrt{ }(2 / \pi) \int f(x) \sin s x d x
$$

Using inversion formula for Fourier sine transforms, we get

$$
=(2 / \pi) \int_{0} \sqrt{1+x^{2}} d x
$$

Example 11

Find the Fourier sine transform of $\frac{x}{a^{2}+x^{2}}$ and the Fourier cosine transform of $\frac{1}{a^{2}+x^{2}}$. To find the Fourier sine transform of x
,

$$
=
$$

We have to find $\mathrm{F}_{5}\left\{\mathrm{e}^{-\mathrm{ax}}\right\}$.

$$
\overline{a^{2}+x^{2}}
$$

Give

$$
=\sqrt{ }(\pi / 2) e^{-a s}
$$

Similarly, for finding the Fourier cosine transform of

1
$工 a^{2}+x^{2}$, we have to find F $F_{c}\left\{e^{-a x}\right\}$.

$$
a^{2}+x^{2}
$$

Consider, $\quad F_{c}\left\{e^{-a x}\right\}=\sqrt{ }(2 / \pi) \int e_{0}^{-a x} \operatorname{cossx} d x$.

$$
=\sqrt{ }(2 / \pi) \quad \frac{a}{a^{2}+s^{2}} .
$$

Using inversion formula for Fourier cosine transforms, we get

a

Example 12
Find the Fourier cosine transform of $\mathrm{e}^{-\mathrm{a} \times} \quad$ and hence evaluate the Fourier sine transform
of

The Fourier cosine transform of $e^{-a x}$ is given by

$$
\begin{aligned}
& \text { But, } \quad F_{s}\{x f(x)\}=-\frac{d}{d s} F_{c}(s)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{\sqrt{2}} e^{-s / 4 a^{2}\left(-s / 2 a^{2}\right) \cdot a} \\
& =\frac{s}{2 \sqrt{ } 2 \cdot a^{3}} e^{-s^{2} / 4 a^{2}} . \\
& F_{c}[1 / \sqrt{ } x]=1 / \sqrt{ } s \\
& \text { and } \quad F_{s}\left[1 / V_{x}\right]=1 / V_{s}
\end{aligned}
$$

This shows that $1 / \sqrt{ } \mathrm{x}$ is self-reciprocal.

