
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

A Model of Distributed Computations

1.8 A Distributed Program

 A distributed program is composed of a set of n asynchronous processes p1, p2…, pi… ,pn

that communicate by message passing over the communication network. Without loss of

generality, we assume that each process is running on a different processor. The processes do not

share a global memory and communicate solely by passing messages.

Let Cij denote the channel from process pi to process pj and let mij denote a message sent

by pi to pj . The communication delay is finite and unpredictable. Also, these processes do not

share a global clock that is instantaneously accessible to these processes. Process execution and

message transfer are asynchronous – a process may execute an action spontaneously and a process

sending a message does not wait for the delivery of the message to be complete.

The global state of a distributed computation is composed of the states of the processes and

the communication channels. The state of a process is characterized by the state of its local memory

and depends upon the context. The state of a channel is characterized by the set of messages in

transit in the channel.

1.9 A model of distributed executions

 The execution of a process consists of a sequential execution of its actions. The actions are

atomic and the actions of a process are modeled as three types of events, namely, internal events,

message send events, and message receive events. Let ex
i denote the xth event at process pi.

Subscripts and/or superscripts will be dropped when they are irrelevant or are clear from the

context. For a message m, let send(m) and rec(m) denote its send and receive events, respectively.

The occurrence of events changes the states of respective processes and channels, thus

causing transitions in the global system state. An internal event changes the state of the process at

which it occurs. A send event (or a receive event) changes the state of the process that sends (or

receives) the message and the state of the channel on which the message is sent (or received). An

internal event only affects the process at which it occurs.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

The events at a process are linearly ordered by their order of occurrence. The execution of

process pi produces a sequence of events ,...,....,....., 121 +x

i

x

iii eeee and it is denoted by Hi,

where hi is the set of events produced by pi and binary relation →i defines a linear order on these

events. Relation → i expresses causal dependencies among the events of pi.

The send and the receive events signify the flow of information between processes and

establish causal dependency from the sender process to the receiver process. A relation →msg that

captures the causal dependency due to message exchange, is defined as follows. For every message

m that is exchanged between two processes, we have

send(m) →msg rec(m)

Figure: The space–time diagram of a distributed execution.

Relation →msg defines causal dependencies between the pairs of corresponding send and

receive events. The evolution of a distributed execution is depicted by a space–time diagram.

Figure shows the space–time diagram of a distributed execution involving three processes. A

horizontal line represents the progress of the process; a dot indicates an event; a slant arrow

indicates a message transfer.

Generally, the execution of an event takes a finite amount of time; however, since we

assume that an event execution is atomic (hence, indivisible and instantaneous), it is justified to

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

denote it as a dot on a process line. In this figure, for process p1, the second event is a message

send event, the third event is an internal event, and the fourth event is a message receive event.

Causal precedence relation

 The execution of a distributed application results in a set of distributed events produced by

the processes. Let H =⋃ihi denote the set of events executed in a distributed computation. Next,

we define a binary relation on the set H, denoted as →, that expresses causal dependencies between

events in the distributed execution.

The causal precedence relation induces an irreflexive partial order on the events of a

distributed computation that is denoted as H=(H, →).

For any two events ei and ej , ei ej denotes the fact that event ej does not directly or

transitively dependent on event ei. That is, event ei does not causally affect event ej . Event ej is

not aware of the execution of ei or any event executed after ei on the same process.

Logical vs. physical concurrency

In a distributed computation, two events are logically concurrent if and only if they do not

causally affect each other. Physical concurrency, on the other hand, has a connotation that the

events occur at the same instant in physical time. Note that two or more events may be logically

concurrent even though they do not occur at the same instant in physical time.

Whether a set of logically concurrent events coincide in the physical time or in what order

in the physical time they occur does not change the outcome of the computation. Therefore, even

though a set of logically concurrent events may not have occurred at the same instant in physical

time, for all practical and theoretical purposes, we can assume that these events occured at the

same instant in physical time.

