
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

3.6: MULTITHREADED PROGRAMMING

INTRODUCTION TO THREAD

Definition: THREAD

A thread is a lightweight sub-process that defines a separate path of execution. It is the

smallest unit of processing that can run concurrently with the other parts (other threads)

of the same process.

 Threads are independent.

 If there occurs exception in one thread, it doesn't affect other threads.
 It uses a shared memory area.

 As shown in the above figure, a thread is executed inside the process.

 There is context-switching between the threads.
 There can be multiple processes inside the OS, and one process can have multiple

threads.
DIFFERENCE BETWEEN THREAD AND PROCESS:

S.NO PROCESS THREAD

1) Process is a heavy weight program Thread is a light weight process

2) Each process has a complete set of its

own variables

Threads share the same data

3) Processes must use IPC (Inter-
Process Communication) to
communicate with sibling processes

Threads can directly communicate
with each other with the help of
shared variables

4) Cost of communication between Cost of communication between

 processes is high. threads is low.

5) Process switching uses interface in

operating system.

Thread switching does not require

calling an operating system.

6) Processes are independent of one

another

Threads are dependent of one another

7) Each process has its own memory
and resources

All threads of a particular process
shares the common memory and
Resources

8) Creating & destroying processes

takes more overhead

Takes less overhead to create and

destroy individual threads

https://www.javatpoint.com/os-tutorial

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Definition: Multithreading

Multithreading is a technique of executing more than one thread, performing different

tasks, simultaneously.

Multithreading enables programs to have more than one execution paths which

executes concurrently. Each such execution path is a thread. For example, one

thread is writing content on a file at the same time another thread is performing spelling

check.

 MULTITHREADING

A program can be divided into a number of small processes. Each small process can be
addressed as a single thread.

Advantages of Threads / Multithreading:

1. Threads are light weight compared to processes.
2. Threads share the same address space and therefore can share both data and code.
3. Context switching between threads is usually less expensive that between

processes.
4. Cost of thread communication is low than inter-process communication.
5. Threads allow different tasks to be performed concurrently.
6. Reduces the computation time.
7. Through multithreading, efficient utilization of system resources can be achieved.

MULTITASKING

 Definition: Multitasking

 Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to

 maximize the utilization of CPU.

Multitasking can be achieved in two ways:

1) Process-based Multitasking (Multiprocessing):-

 It is a feature of executing two or more programs concurrently.
 For example, process-based multitasking enables you to run the Java compiler at

the same time that you are using a text editor or visiting a web site.
2) Thread-based Multitasking (Multithreading):-

 It is a feature that a single program can perform two or more tasks
simultaneously.

 For instance, a text editor can format text at the same time that it is printing, as
long as these two actions are being performed by two separate threads.

Characteristics Multithreading Multitasking

Meaning A process is divided into several
different sub-processes called as
threads, which has its own path
of execution. This concept is
called as multithreading.

The execution of more than one
task simultaneously is called as
multitasking.

Differences between multi-threading and multitasking

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

3.7: Thread Model / Thread Life Cycle (Different states of a Thread)

Number of CPU

Can be one or more than one

One

Number of
process being
executed

Various components of the same
process are being executed at a
time.

One by one job is being
executed at a time.

Number of users Usually one. More than one.

Memory Space Threads are lighter weight. They
share the same address space

Processes are heavyweight
tasks that require their own
separate address spaces.

Communication

between units

Interthread communication is

Inexpensive

Interprocess communication is

expensive and limited.

Context Switching Context switching from one
thread to the next is lower in
cost.

Context switching from one
process to another is also costly.

Different states, a thread (or applet/servlet) travels from its object creation to
object removal (garbage collection) is known as life cycle of thread. A thread goes
through various stages in its life cycle. At any time, a thread always exists in any one of
the following state:

1. New State
2. Runnable State
3. Running State
4. Waiting/Timed Waiting/Blocked state
5. Terminated State/ dead state

1. New State:

A new thread begins its life cycle in the new state. It remains in this state until the

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

program starts the thread by calling start() method, which places the thread in the runnable
state.

 A new thread is also referred to as a born thread.
 When the thread is in this state, only start() and stop() methods can be called.

Calling any other methods causes an IllegalThreadStateException.
 Sample Code: Thread myThread=new Thread();

2. Runnable State:

After a newly born thread is started, the thread becomes runnable or running by
calling the run() method.
 A thread in this state is considered to be executing its task.
 Sample code: myThread.start();
 The start() method creates the system resources necessary to run the thread,

schedules the thread to run and calls the thread’s run() method.

3. Running state:

 Thread scheduler selects thread to go from runnable to running state. In running
state Thread starts executing by entering run() method.

 Thread scheduler selects thread from the runnable pool on basis of priority, if
priority of two threads is same, threads are scheduled in unpredictable manner.
Thread scheduler behaviour is completely unpredictable.

 When threads are in running state, yield() method can make thread to go in
Runnable state.

4. Waiting/Timed Waiting/Blocked State :

 Waiting State:

Sometimes one thread has to undergo in waiting state because another thread starts
executing. A runnable thread can be moved to a waiting state by calling the wait()
method.
 A thread transitions back to the runnable state only when another thread signals

the waiting thread to continue executing.
 A call to notify() and notifyAll() may bring the thread from waiting state to

runnable state.

 Timed Waiting:

A runnable thread can enter the timed waiting state for a specified interval of time
by calling the sleep() method.
 After the interval gets over, the thread in waiting state enters into the runnable

state.
 Sample Code:

try {

Thread.sleep(3*60*1000);// thread sleeps for 3 minutes

}

catch(InterruptedException ex) { }

http://www.javamadesoeasy.com/2015/03/yield-method-in-threads-8-key-features.html

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

New : A thread begins its life cycle in the new state. It remains in this state until the

start() method is called on it.

Runnable : After invocation of start() method on new thread, the thread becomes

runnable.

Running : A thread is in running state if the thread scheduler has selected it.

Waiting : A thread is in waiting state if it waits for another thread to perform a task.

In this stage the thread is still alive.

Terminated : A thread enter the terminated state when it complete its task.

 Blocked State:

When a particular thread issues an I/O request, then operating system moves the
thread to blocked state until the I/O operations gets completed.

 This can be achieved by calling suspend() method.
 After the I/O completion, the thread is sent back to the runnable state.

5. Terminated State:

A runnable thread enters the terminated state when,

(i) It completes its task (when the run() method has finished)

public void run() { }

(ii) Terminates (when the stop() is invoked) – myThread.stop();

A terminated thread cannot run again.

THE “main” THREAD

The “main” thread is a thread that begins running immediately when a java

program starts up. The “main” thread is important for two reasons:
1. It is the thread form which other child threads will be spawned.
2. It must be the last thread to finish execution because it performs various shutdown
actions.

 Although the main thread is created automatically when our program is started, it

can be controlled through a Thread object.
 To do so, we must obtain a reference to it by calling the method currentThread().

Example:

class CurrentThreadDemo {
public static void main(String args[])
{
Thread t=Thread.currentThread();
System.out.println(“Current Thread: “+t);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

// change the name of the main thread
t.setName(“My Thread”);
System.out.println(“After name change : “+t);

try {
for(int n=5;n>0;n--) {
System.out.println(n);
Thread.sleep(1000);// delay for 1 second
}

} catch(InterruptedException e) {
System.out.println(“Main Thread Interrrupted”);

}
}
}

Output:
Current Thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]
5
4
3
2
1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

We can create threads by instantiating an object of type Thread. Java defines two ways
to create threads:

1. By implementing Runnable interface (java.lang.Runnable)
2. By extending the Thread class (java.lang.Thread)

1. Creating threads by implementing Runnable interface:

 The Runnable interface should be implemented by any class whose instances are
intended to be executed as a thread.

 Implementing thread program using Runnable is preferable than implementing it
by extending Thread class because of the following two reasons:

1. If a class extends a Thread class, then it cannot extend any other class.
2. If a class Thread is extended, then all its functionalities get inherited. This is

an expensive operation.
 The Runnable interface has only one method that must be overridden by the class

which implements this interface:
public void run()// run() contains the logic of the thread

{

// implementation code

}

 Steps for thread creation:

1. Create a class that implements Runnable interface. An object of this class is

Runnable object.

public class MyThread implements Runnable
{

}

2. Override the run() method to define the code executed by the thread.
3. Create an object of type Thread by passing a Runnable object as argument.

Thread t=new Thread(Runnable threadobj, String threadName);

3.8: Creating Threads

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

4. Invoke the start() method on the instance of the Thread class.

t.start();

 Example:

class MyThread implements Runnable

{
public void run()

{

for(int i=0;i<3;i++)

{

System.out.println(Thread.currentThread().getName()+" # Printing "+i);
try

{

Thread.sleep(1000);

}catch(InterruptedException e)
{
System.out.println(e);

}
}

}
}

public class RunnableDemo {
public static void main(String[] args)

{
MyThread obj=new MyThread();
MyThread obj1=new MyThread();
Thread t=new Thread(obj,"Thread-1");
t.start();
Thread t1=new Thread(obj1,"Thread-2");
t1.start();
}
}

Output:

Thread-0 # Printing 0
Thread-1 # Printing 0
Thread-1 # Printing 1
Thread-0 # Printing 1
Thread-1 # Printing 2
Thread-0 # Printing 2

2. Creating threads by extending Thread class:

Thread class provide constructors and methods to create and perform operations on a
thread.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Commonly used Constructors of Thread class:

 Thread()
 Thread(String name)
 Thread(Runnable r)
 Thread(Runnable r, String name)

All the above constructors creates a new thread.
Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.
2. public void start(): starts the execution of the thread.JVM calls the run() method

on the thread.
3. public void sleep(long miliseconds): Causes the currently executing thread to

sleep (temporarily cease execution) for the specified number of milliseconds.
4. public void join(): waits for a thread to die.
5. public void join(long miliseconds): waits for a thread to die for the specified

miliseconds.
6. public int getPriority(): returns the priority of the thread.
7. public int setPriority(int priority): changes the priority of the thread.
8. public String getName(): returns the name of the thread.
9. public void setName(String name): changes the name of the thread.
10. public Thread currentThread(): returns the reference of currently executing

thread.
11. public boolean isAlive(): tests if the thread is alive.
12. public void yield(): causes the currently executing thread object to temporarily

pause and allow other threads to execute.
13. public void suspend(): is used to suspend the thread(depricated).
14. public void resume(): is used to resume the suspended thread(depricated).
15. public void stop(): is used to stop the thread(depricated).
16. public boolean isDaemon(): tests if the thread is a daemon thread.
17. public void setDaemon(boolean b): marks the thread as daemon or user

thread.
18. public void interrupt(): interrupts the thread.
19. public boolean isInterrupted(): tests if the thread has been interrupted.
20. public static boolean interrupted(): tests if the current thread has been

interrupted.

 Steps for thread creation:

1. Create a class that extends java.lang.Thread class.
public class MyThread extends Thread
{

}

2. Override the run() method in the sub class to define the code executed by the
thread.
3. Create an object of this sub class.

MyThread t=new MyThread(String threadName);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

4. Invoke the start() method on the instance of the subclass to make the thread
for running.

start();

 Example:

class SampleThread extends Thread

{

public void run()

{

for(int i=0;i<3;i++)

{

System.out.println(Thread.currentThread().getName()+" # Printing "+i);
try

{

Thread.sleep(1000);

}catch(InterruptedException e)
{
System.out.println(e);
}
}
}
}

Output:

public class ThreadDemo {
public static void main(String[] args) {
SampleThread obj=new SampleThread();
obj.start();
SampleThread obj1=new SampleThread();
obj1.start();
}
}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

3.9: THREAD PRIORITY

Thread-0 # Printing
0 Thread-1 # Printing
0 Thread-1 # Printing
1 Thread-0 # Printing
1 Thread-0 # Printing
2 Thread-1 # Printing
2

 Thread priority determines how a thread should be treated with respect to
others.

 Every thread in java has some priority, it may be default priority generated by
JVM or customized priority provided by programmer.

 Priorities are represented by a number between 1 and 10.

1 – Minimum Priority5 – Normal Priority 10 – Maximum Priority

 Thread scheduler will use priorities while allocating processor. The thread which
is having highest priority will get the chance first.

 Higher priority threads get more CPU time than lower priority threads.
 A higher priority thread can also preempt a lower priority thread. For instance,

when a lower priority thread is running and a higher priority thread resumes (for
sleeping or waiting on I/O), it will preempt the lower priority thread.

 If two or more threads have same priorities, we can’t predict the execution of
waiting threads. It is completely decided by thread scheduler. It depends on the
type of algorithm used by thread scheduler.

 3 constants defined in Thread class:

1.public static int MIN_PRIORITY
2.public static int NORM_PRIORITY
3.public static int MAX_PRIORITY

 Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is
1 and the value of MAX_PRIORITY is 10.

 Thread scheduler is a part of Java Virtual Machine (JVM). It decides which

thread should execute first among two or more threads that are waiting for

execution.

 It is decided based on the priorities that are assigned to threads. The thread

having highest priority gets a chance first to execute.

 If two or more threads have same priorities, we can’t predict the execution of

waiting threads. It is completely decided by thread scheduler. It depends on the

type of algorithm used by thread scheduler.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

3.10: Thread Synchronization

Definition: Thread Synchronization

Thread synchronization is the concurrent execution of two or more threads that share

critical resources.

When two or more threads need to use a shared resource, they need some way to

ensure that the resource will be used by only one thread at a time. The process of

ensuring single thread access to a shared resource at a time is called synchronization.

 To set a thread’s priority, use the setPriority() method.

 To obtain the current priority of a thread, use getPriority() method.

 Example:

class TestMultiPriority1 extends Thread{
public void run(){

System.out.println("running thread name is:"+Thread.currentThread().getNam
e());

System.out.println("running thread priority is:"+

Thread.currentThread().getPriority());
}

public static void main(String args[]){
TestMultiPriority1 m1=new TestMultiPriority1();
TestMultiPriority1 m2=new TestMultiPriority1();
m1.setPriority(Thread.MIN_PRIORITY);
m2.setPriority(Thread.MAX_PRIORITY);
m1.start();
m2.start();

}
}

Output:

running thread name is:Thread-0
running thread priority is:10
running thread name is:Thread-1
running thread priority is:1

Threads should be synchronized to avoid critical resource use conflicts. Otherwise,
conflicts may arise when parallel-running threads attempt to modify a common variable
at the same time.
 Why use Synchronization

The synchronization is mainly used to

1. To prevent thread interference.
2. To prevent consistency problem.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-thread
communication.

1. Mutual Exclusive
1. Synchronized method.
2. Synchronized block.
3. static synchronization.

2. Cooperation (Inter-thread communication in java)

 Mutual Exclusive

Mutual Exclusive helps keep threads from interfering with one another while sharing
data. This can be done by two ways in java:

1. by synchronized method
2. by synchronized block

 Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or monitor. Every
object has a lock associated with it. By convention, a thread that needs consistent access
to an object's fields has to acquire the object's lock before accessing them, and then
release the lock when it's done with them.

1. Java synchronized method

 If you declare any method as synchronized, it is known as synchronized method.
Synchronized method is used to lock an object for any shared resource.

 When a thread invokes a synchronized method, it automatically acquires the lock for
that object and releases it when the thread completes its task.

Syntax to use synchronized method:

Access_modifier synchronized return_type method_name(parameters)

{ …….. }

Example of java synchronized method:

class Table{

synchronized void printTable(int n)//synchronized method

{

for(int i=1;i<=5;i++) {
System.out.println(n*i);
try{ Thread.sleep(400);
 }

catch(Exception e) { System.out.println(e); }

}

}

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

class MyThread1 extends
Thread { Table t;
MyThread1(Table t){ this.t=t;
}
public void
run(){
t.printTable(5);
}
}
class MyThread2 extends
Thread{ Table t;
MyThread2(Table
t){ this.t=t;
}
public void run(){
t.printTable(100);
}
}
public class TestSynchronization2{
public static void main(String
args[]){
Table obj = new Table(); //only one
object MyThread1 t1=new
MyThread1(obj); MyThread2 t2=new
MyThread2(obj); t1.start();
t2.start();
} }

Output:

5
10
15
20
25
100
200
300
400
500

2. Synchronized block in java

 Synchronized block can be used to perform synchronization on any specific
resource of the method.

 Suppose you have 50 lines of code in your method, but you want to synchronize
only 5 lines, you can use synchronized block.

 If you put all the codes of the method in the synchronized block, it will work same
as the synchronized method.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Points to remember for Synchronized block

 Synchronized block is used to lock an object for any shared resource.
 Scope of synchronized block is smaller than the method.

Syntax to use synchronized block

1. synchronized (object reference expression) {

2. //code
block 3. }

Example of synchronized block

class Table{
void printTable(int n)

{
synchronized(this) //synchronized block

{
for(int i=1;i<=5;i++){
System.out.println(n*i);
try{ Thread.sleep(400); }catch(Exception e){System.out.println(e);}

}
}

}//end of the method
}
class MyThread1 extends Thread{

Table t;
MyThread1(Table t){

this.t=t;
}
public void run(){

t.printTable(5);
}

}
class MyThread2 extends Thread{

Table t;
MyThread2(Table t){

this.t=t;
}
public void run(){

t.printTable(100);
}

}
public class TestSynchronizedBlock1
{
public static void main(String args[])
{
Table obj = new Table();//only one object
MyThread1 t1=new MyThread1(obj);
MyThread2 t2=new MyThread2(obj);
t1.start();
t2.start();

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

3.11: Inter-Thread Communication

Definition:

Inter-thread communication is a mechanism in which a thread is paused running in its

critical section and another thread is allowed to enter (or lock) in the same critical

section to be executed.

}
}

Output:

5
10
15
20
25
100
200
300
400
500

Difference between synchronized method and synchronized block:

Inter-Thread Communication
Synchronized method

Synchronized block

1. Lock is acquired on whole method.

2. Less preferred.

3. Performance will be less as compared
to synchronized block.

1. Lock is acquired on critical block of
code only.

2. Preferred.

3. Performance will be better as
compared to synchronized method.

Inter-Thread Communication or Co-operation is all about allowing synchronized
threads to communicate with each other.

It is implemented by following methods of Object class and all these methods can be
called only from within a synchronized context.

S.No. Method & Description
1 public final void wait() throws InterruptedException

Causes the current thread to wait until another thread invokes the notify().

2 public final void wait(long timeout) throws InterruptedException

Causes current thread to wait until either another thread invokes the notify()
method or the notifyAll() method for this object, or a specified amount of time
has elapsed.
Parameters:

timeout − the maximum time to wait in milliseconds.

3 public final void notify()

Wakes up a single thread that is waiting on this object's monitor.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

4 Public final void notifyAll()

Wakes up all the threads that called wait() on the same object.

Difference between wait() and sleep()

Parameter wait() sleep()

Synchonized

wait should be called from
synchronized context i.e. from
block or method, If you do not
call it using synchronized
context, it will
throw IllegalMonitorStateExcept
ion

It need not be called from
synchronized block or
methods

Calls on

wait method operates on Object
and defined in Object class

Sleep method operates on
current thread and is in
java.lang.Thread

Release of lock
wait release lock of object on
which it is called and also other
locks if it holds any

Sleep method does not release
lock at all

Wake up
condition

until call notify() or notifyAll()
from Object class

Until time expires or calls
interrupt()

static wait is non-static method sleep is static method

Example: The following program illustrates simple bank transaction operations with
inter-thread communication:
class Customer{
int Balance=10000;

synchronized void withdraw(int amount)

{
System.out.println("going to withdraw..."+amount);

if(Balance<amount)
{

System.out.println("Less balance; Balance = Rs. "+Balance+"\nWaiting for
deposit...\n");

try

{
wait();

}

catch(Exception e){}

}
Balance-=amount;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

3.12: Suspending, Resuming and Stopping threads

System.out.println("withdraw completed...");
}

synchronized void deposit(int amount)

{

System.out.println("going to deposit... Rs. "+amount);
Balance+=amount;
System.out.println("deposit completed... Balance = "+Balance);
notify();

}
}

class ThreadCommn

{

public static void main(String args[]) {
Customer c=new Customer();
new Thread()
{

public void run(){c.withdraw(20000);}

}.start();

new Thread(){
public void run(){c.deposit(15000);}

}.start();
}

}

Output:

going to withdraw...20000
Less balance; Balance = Rs. 10000
Waiting for deposit...
going to deposit... Rs. 15000
deposit completed... Balance = 25000
withdraw completed...

The functions of Suspend, Resume and Stop a thread is performed using Boolean-type
flags in a multithreading program. These flags are used to store the current status of the
thread.

1. If the suspend flag is set to true, then run() will suspend the execution of the
currently running thread.

2. If the resume flag is set to true, then run() will resume the execution of the
suspended thread.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

3. If the stop flag is set to true, then a thread will get terminated.
Example

class NewThread implements Runnable
{

String name; //name of
thread Thread thr;
boolean suspendFlag;
boolean stopFlag;

NewThread(String threadname)
{

name = threadname;
thr = new Thread(this, name);
System.out.println("New thread : " + thr);
suspendFlag = false;
stopFlag = false;
thr.start(); // start the thread

}

/* this is the entry point for thread */
public void run()
{

try
{

for(int i=1; i<10; i++)
{

System.out.println(name + " : " + i);
Thread.sleep(1000);
synchronized(this)
{

while(suspendFlag)
{

wait();
}
if(stopFlag)

break;
}

}
}

catch(InterruptedException e)
{

System.out.println(name + " interrupted");
}
System.out.println(name + " exiting...");

}

synchronized void mysuspend()

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

{
suspendFlag = true;

}

synchronized void myresume()
{

suspendFlag = false;
notify();

}

synchronized void mystop()

{
suspendFlag=false;
stopFlag=true;
notify();
System.out.println("Thread "+name+" Stopped!!!");

}
}
class SuspendResumeThread

{
public static void main(String args[])
{

NewThread obj1 = new NewThread("One");
NewThread obj2 = new NewThread("two");
try
{

Thread.sleep(1000);
obj1.mysuspend();
System.out.println("Suspending thread One...");
Thread.sleep(1000);
obj1.myresume();
System.out.println("Resuming thread One...");
obj2.mysuspend();
System.out.println("Suspending thread Two...");
Thread.sleep(1000);
obj2.myresume();
System.out.println("Resuming thread Two...");
obj2.mystop();

}
catch(InterruptedException e)
{

System.out.println("Main thread Interrupted..!!");
}

System.out.println("Main thread exiting...");

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

}

Output:

New thread : Thread[One,5,main]
New thread : Thread[two,5,main]
One : 1
two : 1
One : 2

Suspending thread One...
two : 2
two : 3
Resuming thread One...
One : 3
Suspending thread Two...
One : 4
Resuming thread Two...
two : 4
Thread two Stopped!!!
Main thread exiting...
two exiting...
One : 5
One : 6
One : 7
One : 8
One : 9
One exiting...

	DIFFERENCE BETWEEN THREAD AND PROCESS:
	Advantages of Threads / Multithreading:
	MULTITASKING
	1) Process-based Multitasking (Multiprocessing):-
	2) Thread-based Multitasking (Multithreading):-
	1. New State:
	2. Runnable State:
	3. Running state:
	4. Waiting/Timed Waiting/Blocked State :
	 Timed Waiting:
	try {
	}
	 Blocked State:
	5. Terminated State:
	public void run() { }
	Example:
	Output:
	1. Creating threads by implementing Runnable interface:
	public void run()// run() contains the logic of the thread
	// implementation code
	 Steps for thread creation:
	Thread t=new Thread(Runnable threadobj, String threadName);
	t.start();
	Output: (1)
	2. Creating threads by extending Thread class:
	Commonly used Constructors of Thread class:
	Commonly used methods of Thread class:
	 Steps for thread creation: (1)
	MyThread t=new MyThread(String threadName);
	start();
	Output: (2)
	 3 constants defined in Thread class:
	Output: (3)
	 Why use Synchronization
	 Thread Synchronization
	 Mutual Exclusive
	 Concept of Lock in Java
	1. Java synchronized method
	Access_modifier synchronized return_type method_name(parameters)
	synchronized void printTable(int n)//synchronized method
	for(int i=1;i<=5;i++) { System.out.println(n*i); try{ Thread.sleep(400); }
	} (1)
	Output: (4)
	2. Synchronized block in java
	Points to remember for Synchronized block
	Syntax to use synchronized block
	2. //code block 3. }
	Output: (5)
	Difference between synchronized method and synchronized block:
	try
	Output: (6)
	Example
	Output: (7)

