ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

TEXT ANNOTATION

The most basic types of annotations we will use are axes labels and titles, here we will see some more
visualization and annotation information’s.

Text annotation can be done manually with the plt.text/ax.text command, which will place text at a
particular x/y value.

The ax.text method takes an x position, a y position, a string, and then optional keywords specifying
the color, size, style, alignment, and other properties of the text. Here we used ha='right' and
ha='center', where ha is short for horizontal alignment.

Transforms and Text Position

We anchored our text annotations to data locations. Sometimes it’s preferable to anchor the text to a
position on the axes or figure, independent of the data. In Matplotlib, we do this by modifying the
transform.

Any graphics display framework needs some scheme for translating between coordinate systems.
Mathematically, such coordinate transformations are relatively straightforward, and Matplotlib has a
well- developed set of tools that it uses internally to perform them (the tools can be explored in the
matplotlib.transforms submodule).

There are three predefined transforms that can be useful in this situation.

o axtransData - Transform associated with data coordinates
o gxtransAxes - Transform associated with the axes (in units of axes dimensions)
o figtransFigue - Transform associated with the figure (in vnits of figure dimensions)

Example

import matplotlib.pyplot as plt

import matplotlib as mpl
plt.style.use('seaborn-whitegrid')

import numpy as np

import pandas as pgd.

fig, ax = plt.subplots(facecolor="lightgray')

ax.axis([0, 10, 0, 10])

transform=ax,transData is the default, but we'll specify it anyway
ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData

ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes)
ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure);

10

a
<]
- Data: (1, 5)
4
2
Figure: (0.2, 0.2) Axes: (0.5, 0.1)
DO 2 4 =] a8 10

CS3352 - Foundations of Data Science

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

THREE DIMENSIONAL PLOTTING

We enable three-dimensional plots by importing the mplot3d toolkit, included with the main
Matplotlib installation

import numpy as np
import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d + Lo
fig = plt.figure() [o
ax = plt.axes(projection="3d") | oe

I o2

& B
With this 3D axes enabled. we can now plot a variety L J,f‘; a0
of three-dimensional plot types. oK :'?"---u — oo

0.4 B ,__‘/"r : o
a8 . ao

Three-Dimensional Points and Lines

The most basic three-dimensional plot is a line or scatter plot created from sets of (X, y, z) triples. In
analogy with the more common two-dimensional plots discussed earlier, we can create these using the

ax.plot3D and ax.scatter3D functions.

import numpy as np

import matplotlib.pyplot as plt R f
from mpl_toolkits import mplot3d Al I
ax = plt.axes(projection="3d') N o t
Data for a three-dimensional line 3 : <4 /
zline = np.linspace(0, 15, 1000) L = A as
xline = np.sin(zline) s T ,ﬁ/o:j
vline = np.cos(zline) -
ax.plot3D(xline, yline, zline, 'gray’)

Data for three-dimensional scattered points
zdata = 15 * np.random.random(100)

xdata = np.sin(zdata) + 0.1 * np.random.randn(100)
ydata = np.cos(zdata) + 0.1 * np.random.randn(100)

Three-Dimensional Contour Plots
e mplot3d contains tools to create three-dimensional relief plots using the same inputs.
e Like two-dimensional ax.contour plots, ax.contour3D requires all the input data to be in the form of
two- dimensional regular grids, with the Z data evaluated at each point.

e Here we’ll show a three-dimensional contour diagram of a three dimensional sinusoidal function

CS3352 - Foundations of Data Science

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

import pumpy. as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
def fix, y):
return np.sin(np.sgri(x ** 2 + y ** 2})
= np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
= np.meshgrid(x, y)
7=1(X,Y)
fig = pltfigural)
ax = plt.axes(projection="3d")
ax.contour3D(X, Y, Z, 50, cmap="binary')
ax.set_xlabel('x")

ax.set_ylabel('y')
ax.set_zlabel('z")

plt.show()

Wire frames and Surface Plots
* Two other types of three-dimensional plots that work on gridded data are wireframes and surface plots.
® These take a grid of values and project it onto the specified threedimensional surface, and can make the
resulting three-dimensional forms quite easy to visualize.
wireframe
import numpy as np

import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

fig = plt.fizure()

ax = plt.axes(projection="3d")
ax.plot_wireframe(X, Y, Z, color="black")
ax.set _title('wireframe’);

plt.show()

* A surface plot 1s like a wireframe plot, but each face
of the wireframe 1s a filled polyzon.

CS3352 - Foundations of Data Science

