
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS375- WEB TECHNOLOGIES

2.3 EXCEPTION HANDLING

An exception signifies the presence of an abnormal condition which requires special

operable techniques. In programming terms, an exception is the anomalous code that breaks the

normal flow of the code. Such exceptions require specialized programming constructs for its

execution.

What is Exception Handling

In programming, exception handling is a process or method used for handling the abnormal

statements in the code and executing them. It also enables to handle the flow control of the

code/program. For handling the code, various handlers are used that process the exception and

execute the code. For example, the Division of a non-zero value with zero will result into infinity

always, and it is an exception. Thus, with the help of exception handling, it can be executed and

handled.

In exception handling:

• A throw statement is used to raise an exception. It means when an abnormal condition

occurs, an exception is thrown using throw.

• The thrown exception is handled by wrapping the code into the try…catch block. If an

error is present, the catch block will execute, else only the try block statements will get

executed.

• Thus, in a programming language, there can be different types of errors which may disturb

the proper execution of the program.

Types of Errors

While coding, there can be three types of errors in the code:

1. Syntax Error: When a user makes a mistake in the pre-defined syntax of a programming

language, a syntax error may appear.

2. Runtime Error: When an error occurs during the execution of the program, such an error

is known as Runtime error. The codes which create runtime errors are known as

Exceptions. Thus, exception handlers are used for handling runtime errors.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS375- WEB TECHNOLOGIES

3. Logical Error: An error which occurs when there is any logical mistake in the program

that may not produce the desired output, and may terminate abnormally. Such an error is

known as Logical error.

Error Object

When a runtime error occurs, it creates and throws an Error object. Such an object can be used as

a base for the user-defined exceptions too. An error object has two properties:

1. name: This is an object property that sets or returns an error name.

2. message: This property returns an error message in the string form.

Although Error is a generic constructor, there are following standard built-in error types or error

constructors beside it:

1. EvalError: It creates an instance for the error that occurred in the eval(), which is a global

function used for evaluating the js string code.

2. InternalError: It creates an instance when the js engine throws an internal error.

3. RangeError: It creates an instance for the error that occurs when a numeric variable or

parameter is out of its valid range.

4. ReferenceError: It creates an instance for the error that occurs when an invalid reference is

de-referenced.

5. SyntaxError: An instance is created for the syntax error that may occur while parsing the

eval().

6. TypeError: When a variable is not a valid type, an instance is created for such an error.

7. URIError: An instance is created for the error that occurs when invalid parameters are

passed in encodeURI() or decodeURI().

Exception Handling Statements

There are following statements that handle if any exception occurs:

o throw statements

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS375- WEB TECHNOLOGIES

o try…catch statements

o try…catch…finally statements.

JavaScript try…catch

A try…catch is a commonly used statement in various programming languages. Basically,

it is used to handle the error-prone part of the code. It initially tests the code for all possible errors

it may contain, then it implements actions to tackle those errors (if occur). A good programming

approach is to keep the complex code within the try…catch statements.

Let's discuss each block of statement individually:

try{} statement: Here, the code which needs possible error testing is kept within the try

block. In case any error occur, it passes to the catch{} block for taking suitable actions and handle

the error. Otherwise, it executes the code written within.

catch{} statement: This block handles the error of the code by executing the set of

statements written within the block. This block contains either the user-defined exception handler

or the built-in handler. This block executes only when any error-prone code needs to be handled

in the try block. Otherwise, the catch block is skipped.

Syntax:

try{

expression; } //code to be written.

catch(error){

expression; } // code for handling the error.

try…catch example

<html>

<head> Exception Handling</br></head>

<body>

<script>

try{

var a= ["34","32","5","31","24","44","67"]; //a is an array

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS375- WEB TECHNOLOGIES

document.write(a); // displays elements of a

document.write(b); //b is undefined but still trying to fetch its value. Thus catch block will be

 invoked

}catch(e){

alert("There is error which shows "+e.message); //Handling error

}

</script>

</body>

</html>

Output:

Throw Statement

Throw statements are used for throwing user-defined errors. User can define and throw their own

custom errors. When throw statement is executed, the statements present after it will not execute.

The control will directly pass to the catch block.

Syntax:

throw exception;

try…catch…throw syntax

try{

throw exception; // user can define their own exception

}

catch(error){

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS375- WEB TECHNOLOGIES

expression; } // code for handling exception.

The exception can be a string, number, object, or boolean value.

throw example with try…catch

<html>

<head>Exception Handling</head>

<body>

<script>

try {

 throw new Error('This is the throw keyword'); //user-defined throw statement.

}

catch (e) {

 document.write(e.message); // This will generate an error message

}

</script>

</body>

</html>

Output:

try…catch…finally statements

Finally is an optional block of statements which is executed after the execution of try and catch

statements. Finally block does not hold for the exception to be thrown. Any exception is thrown

or not, finally block code, if present, will definitely execute. It does not care for the output too.

Syntax:

try{

expression;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CCS375- WEB TECHNOLOGIES

}

catch(error){

expression;

}

finally{

expression; } //Executable code

try…catch…finally example

<html>

<head>Exception Handling</head>

<body>

<script>

try{

var a=2;

if(a==2)

document.write("ok");

}

catch(Error){

document.write("Error found"+e.message);

}

finally{

document.write("Value of a is 2 ");

}

</script>

</body>

</html>

Output:

