ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY

 Approved by AICTE \& Affliated to anna university Accredited with A^{+}grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERING

NAME OF THE SUBJECT: ENGINEERING MECHANICS SUBJECT CODE : ME3351

REGULATION 2021

UNIT V: DYNAMICS OF PARTICLES

DYNAMIC OF PARTICLES

Dynamics

It is the branch of science which deals with the study of a body in motion. Dynamic is further classified into two branches 1. Kinematics 2. Kinetics Kinematics:

Kinematics is the study of motion of a moving body without considering the force.

Kinetics:

Kinetics is the study of motion of a moving body with considering external force.

Types of plane motion:

1. Rectilinear motion
2. Curvilinear motion

Rectilinear motion:
The motion of particle along a straight line.
Ex: A car moving straight road.
Ex: A stone vertically downward.
Curvilinear motion:

The motion of a particle along a curved path

Characteristic of Kinematics:

1. Displacement: ' s '

The displacement of a moving particle is the change in its position, during which the particle remains in motion. It is denoted by ' s '
2. Speed:

It is distance travelled by the particle (or) body along the path per unit time.

$$
\text { Speed }=\frac{\text { Distance dravelled }}{\text { time taken }}
$$

3. Velocity ' v '

It is the rate of change displacement.
Velocity $=$ Distance travelled in a particular direction
Time taken $\quad \mathrm{m} / \mathrm{s}$

4. Acceleration 'a'

It is the rate of change of velocity acceleration

$$
\begin{aligned}
& a=\frac{\text { change of velocity }}{\text { time taken }} \\
& a=\frac{\text { final velocity } \sim \text { Intial velocity }}{\text { time taken }}
\end{aligned}
$$

Negative acceleration is called retardation [When final velocity < Initial velocity]
5. Average velocity

$$
\text { Average velocity }=\frac{\text { Change in position }}{\text { Change in time }}=\frac{\Delta x}{\Delta t}
$$

6. $\frac{\text { Average speed }}{\text { Average speed }}=\frac{\text { Total distance travelled }}{\text { Total time taken }}$

Mathematically Expression for Velocity and Acceleration:

Let $s=$ Distance travelled by a particle in a straight line
$\mathrm{t}=$ time taken by the particle travelled this distance
Velocity $=\frac{d s}{d t}$
Acceleration $=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d}{d t}\right)=\mathrm{d}^{2} \mathrm{~s} / \mathrm{dt}^{2}$

Types of Rectilinear Motion:

1. Uniform acceleration
2. Variable acceleration

Rectilinear motion with uniform acceleration:
Eqn of motion in a straight line:
Consider the particle moving the uniform acceleration is a straight line.
Let $\mathrm{u}=\operatorname{Initial}$ velocity $(\mathrm{m} / \mathrm{s})$
$\mathrm{v}=$ final velocity $(\mathrm{m} / \mathrm{s})$
$\mathrm{s}=$ Distance travelled (m)
$\mathrm{t}=$ time taken by the particle by the change from the u to v
$\mathrm{a}=$ acceleration of particle $\mathrm{m} / \mathrm{s}^{2}$
change o velocity=final velocity-Intial velocity

$$
=\mathrm{v}-\mathrm{u}
$$

Acceleration $=\frac{\text { change of velocity }}{\text { time taken }}$
$a=\frac{v-u}{t}$
$a \mathrm{t}=\mathrm{v}-\mathrm{u}$
v=u+at----------------> (1)

Average velocity $=\frac{\text { Initial velocity }+ \text { final velocity }}{2}$

$$
=\frac{u+v}{2}
$$

Distance traveled by the particle in +sec
$s=$ Average velocity \times time
$s=\left(\frac{u+v}{2}\right) t------------->(2)$
velocity $=\frac{\text { distance }}{\text { time }}$
$v=\frac{s}{t}$
$s=v t$
$s=\frac{u+v}{2} \times t$
$2 s=u+v+t$
$2 s / t=u+v$
$u+v=\frac{2 s}{t}$
$v=u+a t$
$u+u+a t=\frac{2 s}{t}$
$s=\frac{(2 u t+d t}{2}$
$s=\frac{2 u t+a t^{2}}{2}$
$s=\frac{2 u t+a t^{2}}{2}$
$s=\frac{2 u t}{2} \neq \frac{a t^{2}}{2}$
$s=u t+1 / 2 a t$

$$
\begin{aligned}
& \mathrm{s}=u t+1 / 2 a t^{2} \\
& \text { from }(1) \mathrm{v}=u+a t \quad \mathrm{t}=\frac{v-u}{a} \\
& s=u\left(\frac{v-u}{a}\right)+\frac{1}{2} a \times\left(\frac{v-u}{a}\right) 2 \\
& s=\frac{u v-u^{2}}{a}+\frac{1}{2} a\left(\frac{v-u}{a^{2}}\right) \\
& s=\frac{u v}{a}-\frac{u^{2}}{a}+\frac{1}{2} \frac{v^{2}+u^{2}-2 v u}{a} \\
& s=\frac{u v}{a}-\frac{u^{2}}{a}+\frac{v^{2}}{2 a}+\frac{u^{2}}{2 a}-\frac{2 u v}{2 a} \\
& s=\frac{1}{2}\left[u v \times 2-u^{2} \times 2+v^{2}+u^{2}-2 u v\right] \\
& \mathrm{s}=\frac{1}{2 \mathrm{a}}\left[2 \mathrm{uv}-2 \mathrm{u}^{2}+\mathrm{v}^{2}+\mathrm{u}^{2}-2 \mathrm{uv}\right] \\
& s=\frac{1}{2 a}\left[v^{2}-u^{2}\right] \\
& 2 a s=v^{2}-u^{2} \\
& v^{2}=u^{2}+2 a
\end{aligned}
$$

